

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Setup Indy SDK build environment for MacOS

	Install Rust and rustup (https://www.rust-lang.org/install.html).

	Install required native libraries and utilities

brew install pkg-config
brew install libsodium
brew install automake
brew install autoconf
brew install cmake
brew install openssl

	Setup environment variables:

export PKG_CONFIG_ALLOW_CROSS=1
export CARGO_INCREMENTAL=1
export RUST_LOG=indy=trace
export RUST_TEST_THREADS=1

	Setup OPENSSL_DIR variable: path to installed openssl library

export OPENSSL_DIR=/usr/local/Cellar/openssl/1.0.2l

	Checkout and build the library:

git clone https://github.com/hyperledger/indy-sdk.git
cd ./indy-sdk/libindy
cargo build

Setup Indy SDK build environment for RHEL based distro (Amazon Linux 2017.03)

	Install Rust and rustup (https://www.rust-lang.org/install.html).

	Install required native libraries and utilities available in repos:

yum clean all
yum upgrade -y
yum groupinstall -y "Development Tools"
yum install -y \
 wget \
 cmake \
 pkgconfig \
 openssl-devel \
 sqlite-devel

	Build and install modern version of libsodium from sources:

cd /tmp
curl https://download.libsodium.org/libsodium/releases/libsodium-1.0.12.tar.gz | tar -xz
cd /tmp/libsodium-1.0.12
./configure
make
make install
rm -rf /tmp/libsodium-1.0.12

export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:/usr/local/lib/pkgconfig
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib

	Checkout and build the library:

git checkout https://github.com/hyperledger/indy-sdk.git
cd ./indy-sdk
cargo build

	Run integration tests:

	Start local nodes pool on 127.0.0.1:9701-9708 with Docker:

docker build -f ci/indy-pool.dockerfile -t indy_pool .
docker run -itd -p 9701-9709:9701-9709 indy_pool

In some environments, this approach with mapping of local ports to container ports
can’t be applied. Dockerfile ci/indy-pool.dockerfile supports optional pool_ip param
that allows changing ip of pool nodes in generated pool configuration. The following
commands allow to start local nodes pool in custom docker network and access this pool by
custom ip in docker network:

docker network create --subnet 10.0.0.0/8 indy_pool_network
docker build --build-arg pool_ip=10.0.0.2 -f ci/indy-pool.dockerfile -t indy_pool .
docker run -d --ip="10.0.0.2" --net=indy_pool_network indy_pool

It can be usefull if we wants to launch integration tests inside another container attached to
the same docker network.

	Run tests

RUST_TEST_THREADS=1 cargo test

It is possible to change ip of test pool by providing of TEST_POOL_IP environment variable:

RUST_TEST_THREADS=1 TEST_POOL_IP=10.0.0.2 cargo test

See ci/amazon.dockerfile [https://github.com/hyperledger/indy-sdk/tree/master/ci/amazon.dockerfile] for example of Amazon Linux based environment creation in Docker.

Indy SDK test approach

Components

Indy SDK contains the following parts:

	libindy - native library that provides high-level API for development of Sovrin-based applications.
It provides methods for handling communication with Indy pool, secure wallet, agents communication,
sign/verify, encrypt/decrypt, and anoncreds protocol

	Python Wrapper - FFI based wrapper for native libindy that allows application development with python language

	Java Wrapper - FFI based wrapper for native libindy that allows application development on Java platform

	iOS Wrapper - Objective-C based wrapper for native libindy that allows application development on Java platform

	.Net Wrapper - FFI based wrapper for native libindy that allows application development on .Net platform

Acceptance testing

The Acceptance test procedure consists of the following parts:

	Functional testing

	Installability testing

	Interoperability testing

	Documentation testing

Functional testing

Functional part of test procedure contains the set of automated system/integration tests that CI/CD execute for each
merge commit to master or rc branch. Release artifacts will be created from the same libindy binaries that were
used for tests execution. Creation of rc package assumes that automated functional tests are passed.
See cd-pipeline.puml for details.

Note that libindy and wrappers also provide the set of unit tests, but they are mostly used to follow TDD
approach and don’t follow formal test design.

In the future we expect extending functional test procedure with some manual steps for complex cases that
will be performed after rc package is created. Mostly it is relevant for Low cases.

Functional specification

Specification to API calls for now are present as comments in interface parts of source code. See:

	https://github.com/hyperledger/indy-sdk/tree/master/libindy/include/ (libindy docs)

	https://github.com/hyperledger/indy-sdk/tree/master/wrappers/python/indy/ (python wrapper docs)

	https://github.com/hyperledger/indy-sdk/tree/master/wrappers/java/src/main/java/org/hyperledger/indy/sdk/
(java wrapper docs)

	https://github.com/hyperledger/indy-sdk/blob/master/wrappers/dotnet/indy-sdk-dotnet/Wrapper/ (.Net wrapper docs)

Test groups

We define the following test groups by priority:

	High cases

	Medium cases

	Low cases

High cases

Successful completion of High cases tests indicates Alpha quality.

	Normal cases. Note that there can be multiple execution branches. We need to cover at each branch.
Branches examples:

	Entity cached in the wallet

	Entity should be taken from the ledger

	Error cases that require an explicit recovering procedure. Examples:

	Invalid wallet credentials

	No entity found in the wallet

	No entity found in the ledger

	Transaction doesn’t allow for current identity

	Unknown crypto

	Claim doesn’t correspond to scheme, proof request doesn’t correspond to claim and etc…

	Revocation registry is full and etc…

Medium cases

Successful completion of High and Medium cases tests indicates Beta quality.

	Precondition checking:

	Invalid handle

	Wallet doesn’t correspond to pool

	Invalid json format

	Invalid json structure (missed fields and etc…)

	Invalid base58

	Invalid crypto keys lenght and format

	Invalid crypto primitives (bigints, points)

	Invalid complex crypto structures (anoncreds structures mostly)

	Invalid responses from 3d parties (Ledger, Agent)

Low cases

Successful completion of High, Medium and Low cases tests indicates Production quality.

	Cases that hard to test: Io errors, timeouts and etc…

Tests specification

Tests specification is provided as the list of test cases for each API call in code grouped by
API group, API call, test level. Also there are dedicated “demo” tests mostly intended to provide
usage examples.

For current moment we implemented High and Medium cases for libindy (except revocation part of Anoncreds). High
cases for Python, Java, iOs, and .Net wrappers.

Note that High cases for wrappers contain the same tests as libindy and we keep this tests cases synced.
Architecture of wrapper allows to claim that High cases coverage can be enough for Beta+ quality.

Note that test procedure was created by developers (not professional QA) and can require review and
enhancements.

See:

	https://github.com/hyperledger/indy-sdk/tree/master/libindy/tests (libindy tests)

	https://github.com/hyperledger/indy-sdk/tree/master/wrappers/python/tests (python wrapper tests)

	https://github.com/hyperledger/indy-sdk/tree/master/wrappers/java/src/test/java/org/hyperledger/indy/sdk (java wrapper tests)

	https://github.com/hyperledger/indy-sdk/tree/master/wrappers/ios/libindy-pod/libindy-demoTests (iOS wrapper tests)

Installability testing

Functional testing is performed before artifacts packaging. libindy has some runtime dependencies
and we need to be sure that package installation satisfy these dependencies.

I suggest the following:

	Create simple demo projects on C, Python and Java that will depend on libindy artifacts and move our demo tests
to these projects (in the future we need projects for iOS, .Net and NodeJS). We can try to do this in the current
sprint.

	Test libindy and wrapper installation on ubuntu and windows (in the future on macos, rhel, iOS too)

	Test that these demo projects can be built and run with rc packages

For first release these steps can be performed manually and automated in the future.

Ubuntu testing

	Run pool (see docker network option in ubuntu readme)

	build docker image docker build -f ubuntu_acceptance.dockerfile --build-arg indy_sdk_deb="URL to download appropriate version of libindy.deb" .

	start docker container from images built on previous step docker run -it -v <path/to/indy-sdk/samples>:/home/indy --network=<pool network name> <Image ID> /bin/bash

	in docker container:

	Check Java wrapper:

	cd java

	set version of indy dependency in pom.xml

	TEST_POOL_IP=<pool ip> mvn clean compile exec:java -Dexec.mainClass="Main"

	check results

	cd ..

	Check Python wrapper:

	cd python

	set version of python3-indy dependency in setup.py

	python3.6 -m pip install -e .

	TEST_POOL_IP=<pool ip> python3.6 src/main.py

Interoperability testing

The following interoperability cases are needed:

	libindy - Node

	Interoperability with latest Node version. We test it already with functional tests.

	Backward compatibility of Node will be tested as part of Indy Node acceptance.

	libindy - pyindy:

	Anoncreds protocol interoperability. It is already implemented as part of functional tests.

	libindy - libindy

	Persistent configuration backward compatibility for Major version (Requires test development, IS-312).

	Persistent wallet backward compatibility for Major version (Requires test development, IS-312).

	Persistent pool cache backward compatibility for Major version (Requires test development, IS-312).

	Anoncreds protocol backward compatibility for Major version (Requires test development, IS-312).

	Agent communication backward compatibility for Major version (Requires test development, IS-312).

	libindy - wrappers

	For first releases we plan to release wrappers as same package and claim only exact version interoperability.
Current functional test procedure performs this interoperability checking with wrappers functional tests.

For first release we can move with existing functional tests, but future release will require creation of
dedicated interoperability tests. These tests can be automated.

Documentation testing

	Verify Changelog

	Verify documentation update for all claimed changes

Setup Indy SDK build environment for Ubuntu based distro (Ubuntu 16.04)

	Install Rust and rustup (https://www.rust-lang.org/install.html).

	Install required native libraries and utilities:

apt-get update && \
apt-get install -y \
 build-essential \
 pkg-config \
 cmake \
 libssl-dev \
 libsqlite3-dev \
 libsodium-dev

	Checkout and build the library:

git clone https://github.com/hyperledger/indy-sdk.git
cd ./indy-sdk/libindy
cargo build
cd ..

	Run integration tests:

	Start local nodes pool on 127.0.0.1:9701-9708 with Docker:

docker build -f ci/indy-pool.dockerfile -t indy_pool .
docker run -itd -p 9701-9708:9701-9708 indy_pool

In some environments, this approach with mapping of local ports to container ports
can’t be applied. Dockerfile ci/indy-pool.dockerfile supports optional pool_ip param
that allows changing ip of pool nodes in generated pool configuration. The following
commands allow to start local nodes pool in custom docker network and access this pool by
custom ip in docker network:

docker network create --subnet 10.0.0.0/8 indy_pool_network
docker build --build-arg pool_ip=10.0.0.2 -f ci/indy-pool.dockerfile -t indy_pool .
docker run -d --ip="10.0.0.2" --net=indy_pool_network indy_pool

If you use this method then you have to specify the TEST_POOL_IP as specified below when running the tests.

It can be useful if we want to launch integration tests inside another container attached to
the same docker network.

	Run tests

cd libindy
RUST_TEST_THREADS=1 cargo test

It is possible to change ip of test pool by providing of TEST_POOL_IP environment variable:

RUST_TEST_THREADS=1 TEST_POOL_IP=10.0.0.2 cargo test

See libindy/ci/ubuntu.dockerfile [https://github.com/hyperledger/indy-sdk/tree/master/libindy/ci/ubuntu.dockerfile] for example of Ubuntu based environment creation in Docker.

Setup Indy SDK build environment for Windows

Build Environment

	Setup a windows virtual machine. Free images are available at here [https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/]

	Launch the virtual machine

	Download Visual Studio Community Edition 2017

	Check the boxes for the Desktop development with C++ and Linux Development with C++

	In the summary portion on the right hand side also check C++/CLI support

	Click install

	Download git-scm for windows here [https://git-scm.com/downloads/win]

	Install git for windows using:

	Use Git from Git Bash Only so it doesn’t change any path settings of the command prompt

	Checkout as is, commit Unix-style line endings. You shouldn’t be commiting anything anyway but just in case

	Use MinTTY

	Check all the boxes for:

	Enable file system caching

	Enable Git Credential Manager

	Enable symbolic links

	Download rust for windows here [https://www.rust-lang.org/en-US/install.html]

	Choose installation option 1

Get/build dependencies

	Open a the Git Bash command prompt

	Change directories to Downloads:

cd Downloads

	Clone the indy-sdk repository from github.

git clone https://github.com/hyperledger/indy-sdk.git

	Download the prebuilt dependencies here [https://repo.sovrin.org/windows/libindy/deps/]

	Extract them into the folder C:\BIN\x64

It really doesn’t matter where you put these as long as you remember where so you can set
the environment variables to this path

	If you are not building dependencies from source you may skip to Build

Binary deps

	https://www.npcglib.org/~stathis/downloads/openssl-1.0.2k-vs2017.7z

	https://download.libsodium.org/libsodium/releases/libsodium-1.0.12-msvc.zip

Source deps

	http://www.sqlite.org/2017/sqlite-amalgamation-3180000.zip

	https://github.com/miracl/milagro-crypto-c/

	https://github.com/evernym/libzmq-pw

Build sqlite

Download http://www.sqlite.org/2017/sqlite-amalgamation-3180000.zip

Create empty static library project and add sqlite.c file and 2 headers from exctraced
archive. Then just build it.

Build milagro-crypto-c

Checkout https://github.com/miracl/milagro-crypto-c/ repository.

	cmake -DBUILD_SHARED_LIBS=OFF -DCMAKE_BUILD_TYPE=Release -DCMAKE_POSITION_INDEPENDENT_CODE=ON -G “Visual Studio 15 2017 Win64” .

	open AMCL.sln

	disable custom build steps

	build it

Build libzmq-pw

Checkout https://github.com/evernym/libzmq-pw repository.

	open builds/msvc/vs2017/libzmq.sln

	switch “draft API” and “libsodium” options on

	change “output file name” to $(TargetName)-pw

	build (it may print errors while
building tests which can be ignored)

Build

	Get binary dependencies (libamcl*, openssl, libsodium, libzmq, sqlite3).

	Put all *.{lib,dll} into one directory and headers into include/ subdirectory.

	Open a windows command prompt

	Configure MSVS environment to privide 64-bit builds by execution of vcvars64.bat:

"C:\Program Files (x86)\Microsoft Visual Studio\2017\Community\VC\Auxiliary\Build\"vcvars64.bat

Note that depending on the version of Visual Studio placement of vcvars64.bat can be different. For example, it can be
C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\bin\amd64\vcvars64.bat

	execute “C:\Program Files (x86)\Microsoft Visual Studio\2017\Community\VC\Auxiliary\Build\vcvars64.bat”

	Point path to this directory using environment variables:

	set INDY_PREBUILT_DEPS_DIR=C:\BIN\x64

	set MILAGRO_DIR=C:\BIN\x64

	set ZMQPW_DIR=C:\BIN\x64

	set SODIUM_LIB_DIR=C:\BIN\x64

	set OPENSSL_DIR=C:\BIN\x64

	set PATH to find .dlls:

	set PATH=C:\BIN\x64\lib;%PATH%

	change dir to indy-sdk/libindy and run cargo (you may want to add –release –target x86_64-pc-windows-msvc keys to cargo)

openssl-sys workaround

If your windows build fails complaining on gdi32.lib you should edit

 ~/.cargo/registry/src/github.com-*/openssl-sys-*/build.rs

and add

 println!("cargo:rustc-link-lib=dylib=gdi32");

to the end of main() function.

Then try to rebuild whole project.

Run integration tests

	Start local nodes pool on 127.0.0.1:9701-9708 with Docker:

docker build -f ci/indy-pool.dockerfile -t indy_pool .
docker run -itd -p 9701-9709:9701-9709 indy_pool

Please note that this port mapping between container and local host requires
latest Docker for Windows (linux containers) and windows system with Hyper-V support.

If you use some Docker distribution based on Virtual Box you can use Virtual Box’s
port forwarding future to map 9701-9709 container ports to local 9701-9709 ports.

	Run tests

RUST_TEST_THREADS=1 cargo test

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

