

Indy

	Introduction [https://hyperledger-indy.readthedocs.io/en/latest/index.html]

Repositories

	SDK

	Node [https://hyperledger-indy.readthedocs.io/projects/node/en/latest/index.html]

	Agent [https://hyperledger-indy.readthedocs.io/projects/agent/en/latest/index.html]

	Plenum [https://hyperledger-indy.readthedocs.io/projects/plenum/en/latest/index.html]

	Hipe [https://hyperledger-indy.readthedocs.io/projects/hipe/en/latest/text/index.html]

Indy SDK

[image: ../_images/indy-logo.png]
This is the official documentation for the Hyperledger Indy SDK [https://www.hyperledger.org/projects],
which provides a distributed-ledger-based foundation for self-sovereign identity [https://sovrin.org].
Indy provides a software ecosystem for private, secure, and powerful identity, and the Indy SDK enables clients for it.
The major artifact of the SDK is a c-callable library; there are also convenience wrappers
for various programming languages and Indy CLI tool.

All bugs, stories, and backlog for this project are managed through
Hyperledger’s Jira [https://jira.hyperledger.org/secure/RapidBoard.jspa] in project IS
(note that regular Indy tickets are in the INDY project instead…). Also, make sure to join
us on Hyperledger’s Rocket.Chat [https://chat.hyperledger.org/] at
#indy-sdk [https://chat.hyperledger.org/channel/indy-sdk] to discuss. You will need a Linux
Foundation login to get access to these channels.

Go to the next page to get started using the Indy SDK.

Find the other Indy docs at https://hyperledger-indy.readthedocs.io

Getting Started

Welcome to the Indy SDK! This is the best place to be introduced to the Indy ecosystem.
If you are looking to first understand how Indy SDK can be used to implement self-sovereign identity and verifiable credentials,
first check out the video of a demo created by IBM:

 Indy Walkthrough

Indy Walkthrough

A Developer Guide for Building Indy Clients Using Libindy

[image: logo]

	Indy Walkthrough

	A Developer Guide for Building Indy Clients Using Libindy

	What Indy and Libindy are and Why They Matter

	What We’ll Cover

	About Alice

	Infrastructure Preparation

	Step 1: Getting Trust Anchor Credentials for Faber, Acme, Thrift and Government

	Step 2: Connecting to the Indy Nodes Pool

	Step 3: Getting the ownership for Steward’s Verinym

	Step 4: Onboarding Faber, Acme, Thrift and Government by Steward

	Connecting the Establishment

	Getting Verinym

	Step 5: Credential Schemas Setup

	Step 6: Credential Definition Setup

	Alice Gets a Transcript

	Apply for a Job

	Apply for a Loan

	Alice Quits her Job

	Explore the Code

What Indy and Libindy are and Why They Matter

Indy provides a software ecosystem for private, secure, and powerful identity, and libindy enables clients for it. Indy puts people — not the organizations that traditionally centralize identity — in charge of decisions about their own privacy and disclosure. This enables all kinds of rich innovation: connection contracts, revocation, novel payment workflows, asset and document management features, creative forms of escrow, curated reputation, integrations with other cool technologies, and so on.

Indy uses open-source, distributed ledger technology. These ledgers are a form of database that is provided cooperatively by a pool of participants, instead of by a giant database with a central admin. Data lives redundantly in many places, and it accrues in transactions orchestrated by many machines. Strong, industry-standard cryptography protects it. Best practices in key management and cybersecurity pervade its design. The result is a reliable, public source of truth under no single entity’s control, robust to system failure, resilient to hacking, and highly immune to subversion by hostile entities.

If the concepts of cryptography and blockchain details feel mysterious, fear not: this guide will help introduce you to key concepts within Indy. You’re starting in the right place.

What We’ll Cover

Our goal is to introduce you to many of the concepts of Indy and give you some idea of what happens behind the scenes to make it all work.

We’re going to frame the exploration with a story. Alice, a graduate of the fictional Faber College, wants to apply for a job at the fictional company Acme Corp. As soon as she has the job, she wants to apply for a loan in Thrift Bank so she can buy a car. She would like to use her college transcript as proof of her education on the job application and once hired, Alice would like to use the fact of employment as evidence of her creditworthiness for the loan.

The sorts of identity and trust interactions required to pull this off are messy in the world today; they are slow, they violate privacy, and they are susceptible to fraud. We’ll show you how Indy is a quantum leap forward.

Ready?

About Alice

As a graduate of Faber College, Alice receives an alumni newsletter where she learns that her alma mater is offering digital transcripts. She logs in to the college alumni website and requests her transcript by clicking Get Transcript. (Other ways to initiate this request might include scanning a QR code, downloading a transcript package from a published URL, etc.)

Alice doesn’t realize it yet, but to use this digital transcript she will need a new type of identity — not the traditional identity that Faber College has built for her in its on-campus database, but a new and portable one that belongs to her, independent of all past and future relationships, that nobody can revoke or co-opt or correlate without her permission. This is a self-sovereign identity and it is the core feature of Indy.

In normal contexts, managing a self-sovereign identity will require a tool such as a desktop or mobile application. It might be a standalone app or it might leverage a third party service provider that the ledger calls an agency. The Sovrin Foundation publishes reference versions of such tools. Faber College will have studied these requirements and will recommend an Indy app to Alice if she doesn’t already have one. This app will install as part of the workflow from the Get Transcript button.

When Alice clicks Get Transcript, she will download a file that holds an Indy connection request. This connection request file, having an .indy extension and associated with her Indy app, will allow her to establish a secure channel of communication with another party in the ledger ecosystem — Faber College.

So when Alice clicks Get Transcript, she will normally end up installing an app (if needed), launching it, and then being asked by the app whether she wants to accept a request to connect with Faber.

For this guide, however, we’ll be using an Indy SDK API (as provided by libindy) instead of an app, so we can see what happens behind the scenes. We will pretend to be a particularly curious and technically adventurous Alice…

Infrastructure Preparation

Step 1: Getting Trust Anchor Credentials for Faber, Acme, Thrift and Government

Faber College and other actors have done some preparation to offer this service to Alice. To understand these steps let’s start with some definitions.

The ledger is intended to store Identity Records that describe a Ledger Entity. Identity Records are public data and may include Public Keys, Service Endpoints, Credential Schemas, and Credential Definitions. Every Identity Record is associated with exactly one DID (Decentralized Identifier) that is globally unique and resolvable (via a ledger) without requiring any centralized resolution authority. To maintain privacy each Identity Owner can own multiple DIDs.

In this tutorial we will use two types of DIDs. The first one is a Verinym. A Verinym is associated with the Legal Identity of the Identity Owner. For example, all parties should be able to verify that some DID is used by a Government to publish schemas for some document type. The second type is a Pseudonym - a Blinded Identifier used to maintain privacy in the context of an ongoing digital relationship (Connection). If the Pseudonym is used to maintain only one digital relationship we will call it a Pairwise-Unique Identifier. We will use Pairwise-Unique Identifiers to maintain secure connections between actors in this tutorial.

The creation of a DID known to the Ledger is an Identity Record itself (NYM transaction). The NYM transaction can be used for creation of new DIDs that is known to that ledger, the setting and rotation of a verification key, and the setting and changing of roles. The most important fields of this transaction are dest (target DID), role (role of a user NYM record being created for) and the verkey (target verification key). See Requests [https://github.com/hyperledger/indy-node/blob/master/docs/source/requests.md] to get more information about supported ledger transactions.

Publishing with a DID verification key allows a person, organization or thing, to verify that someone owns this DID as that person, organization or thing is the only one who knows the corresponding signing key and any DID-related operations requiring signing with this key.

Our ledger is public permissioned and anyone who wants to publish DIDs needs to get the role of Trust Anchor on the ledger. A Trust Anchor is a person or organization that the ledger already knows about, that is able to help bootstrap others. (It is not the same as what cybersecurity experts call a “trusted third party”; think of it more like a facilitator). See Roles [https://github.com/hyperledger/indy-node/blob/master/docs/source/auth_rules.md] to get more information about roles.

The first step towards being able to place transactions on the ledger involves getting the role of Trust Anchor on the ledger. Faber College, Acme Corp and Thrift Bank will need to get the role of Trust Anchor on the ledger so they can create Verinyms and Pairwise-Unique Identifiers to provide the service to Alice.

Becoming a Trust Anchor requires contacting a person or organization who already has the Trust Anchor role on the ledger. For the sake of the demo, in our empty test ledger we have only NYMs with the Steward role, but all Stewards are automatically Trust Anchors.

Step 2: Connecting to the Indy Nodes Pool

We are ready to start writing the code that will cover Alice’s use case from start to finish. It is important to note that for demo purposes it will be a single test that will contain the code intended to be executed on different agents. We will always point to what Agent is intended to execute each code part. Also we will use different wallets to store the DID and keys of different Agents. Let’s begin.

The first code block will contain the code of the Steward’s agent.

To write and read the ledger’s transactions after gaining the proper role, you’ll need to make a connection to the Indy nodes pool. To make a connection to the different pools that exist, like the Sovrin pool or the local pool we started by ourselves as part of this tutorial, you’ll need to set up a pool configuration.

The list of nodes in the pool is stored in the ledger as NODE transactions. Libindy allows you to restore the actual list of NODE transactions by a few known transactions that we call genesis transactions. Each Pool Configuration is defined as a pair of pool configuration name and pool configuration JSON. The most important field in pool configuration json is the path to the file with the list of genesis transactions. Make sure this path is correct.

The pool.create_pool_ledger_config call allows you to create a named pool configuration. After the pool configuration is created we can connect to the nodes pool that this configuration describes by calling pool.open_pool_ledger. This call returns the pool handle that can be used to reference this opened connection in future libindy calls.

The code block below contains each of these items. Note how the comments denote that this is the code for the “Steward Agent.”

 await pool.set_protocol_version(2)

 pool_ = {'name': 'pool1'}
 pool_['genesis_txn_path'] = get_pool_genesis_txn_path(pool_['name'])
 pool_['config'] = json.dumps({"genesis_txn": str(pool_['genesis_txn_path'])})
 await pool.create_pool_ledger_config(pool_['name'], pool_['config'])
 pool_['handle'] = await pool.open_pool_ledger(pool_['name'], None)

Step 3: Getting the ownership for Steward’s Verinym

Next, the Steward’s agent should get the ownership for the DID that has corresponding NYM transactions with the Steward role on the ledger.

The test ledger we use was pre-configured to store some known Steward NYMs. Also we know seed values for the random number generator that were used to generate keys for these NYMs. These seed values allow us to restore signing keys for these DIDs on the Steward’s agent side and as a result get the DID ownership.

Libindy has a concept of the Wallet. The wallet is secure storage for crypto materials like DIDs, keys, etc… To store the Steward’s DID and corresponding signkey, the agent should create a named wallet first by calling wallet.create_wallet. After this the named wallet can be opened by calling wallet.open_wallet. This call returns the wallet handle that can be used to reference this opened wallet in future libindy calls.

After the wallet is opened we can create a DID record in this wallet by calling did.create_and_store_my_did that returns the generated DID and verkey part of the generated key. The signkey part for this DID will be stored in the wallet too, but it is impossible to read it directly.

 # Steward Agent
 steward = {
 'name': "Sovrin Steward",
 'wallet_config': json.dumps({'id': 'sovrin_steward_wallet'}),
 'wallet_credentials': json.dumps({'key': 'steward_wallet_key'}),
 'pool': pool_['handle'],
 'seed': '000000000000000000000000Steward1'
 }

 await wallet.create_wallet(steward['wallet_config'], steward['wallet_credentials'])
 steward['wallet'] = await wallet.open_wallet(steward['wallet_config'], steward['wallet_credentials'])

 steward['did_info'] = json.dumps({'seed': steward['seed']})
 steward['did'], steward['key'] = await did.create_and_store_my_did(steward['wallet'], steward['did_info'])

Please note: We provided only information about the seed to did.create_and_store_my_did, but not any information about the Steward’s DID. By default DID’s are generated as the first 16 bytes of the verkey. For such DID’s, when dealing with operations that require both a DID and the verkey we can use the verkey in an abbreviated form. In this form the verkey starts with a tilde ‘~’ followed by 22 or 23 characters. The tilde indicates that the DID itself represents the first 16 bytes of the verkey and the string following the tilde represents the second 16 bytes of the verkey, both using base58Check encoding.

Step 4: Onboarding Faber, Acme, Thrift and Government by Steward

Faber, Acme, Thrift and Government should now establish a Connection with the Steward.

Each connection is actually a pair of Pairwise-Unique Identifiers (DIDs). The one DID is owned by one party to the connection and the second by another.

Both parties know both DIDs and understand what connection this pair describes.

The relationship between them is not shareable with others; it is unique to those two parties in that each pairwise relationship uses different DIDs.

We call the process of establish a connection Onboarding.

In this tutorial we will describe the simple version of onboarding process.
In our case, one party will always be the Trust Anchor. Real enterprise scenarios can use a more complex version.

Connecting the Establishment

Let’s look the process of connection establishment between Steward and Faber College.

	Faber and Steward contact in some way to initiate onboarding process.
It can be filling the form on web site or a phone call.

	Steward creates a new DID record in the wallet by calling did.create_and_store_my_did that he will use for secure interactions only with Faber.

Steward Agent
(steward['did_for_faber'], steward['key_for_faber']) = await did.create_and_store_my_did(steward['wallet'], "{}")

	Steward sends the corresponding NYM transaction to the Ledger by consistently calling ledger.build_nym_request to build the NYM request and ledger.sign_and_submit_request to send the created request.

Steward Agent
nym_request = await ledger.build_nym_request(steward['did'], steward['did_for_faber'], steward['key_for_faber'], None, role)
await ledger.sign_and_submit_request(steward['pool'], steward['wallet'], steward['did'], nym_request)

	Steward creates the connection request which contains the created DID and Nonce.
This nonce is just a big random number generated to track the unique connection request. A nonce is a random arbitrary number that can only be used one time. When a connection request is accepted, the invitee digitally signs the nonce so that the inviter can match the response with a prior request.

Steward Agent
connection_request = {
 'did': steward['did_for_faber'],
 'nonce': 123456789
}

	Steward sends the connection request to Faber.

	Faber accepts the connection request from Steward.

	Faber creates a wallet if it does not exist yet.

Faber Agent
await wallet.create_wallet(faber['wallet_config'], faber['wallet_credentials'])
faber['wallet'] = await wallet.open_wallet(faber['wallet_config'], faber['wallet_credentials'])

	Faber creates a new DID record in its wallet by calling did.create_and_store_my_did that it will use only for secure interactions with the Steward.

Faber Agent
(faber['did_for_steward'], faber['key_for_steward']) = await did.create_and_store_my_did(faber['wallet'], "{}")

	Faber creates the connection response which contains the created DID, Verkey and Nonce from the received connection request.

Faber Agent
connection_response = json.dumps({
 'did': faber['did_for_steward'],
 'verkey': faber['key_for_steward'],
 'nonce': connection_request['nonce']
})

	Faber asks the ledger for the Verification key of the Steward’s DID by calling did.key_for_did.

Faber Agent
faber['steward_key_for_faber'] = await did.key_for_did(faber['pool'], faber['wallet'], connection_request['did'])

	Faber anonymously encrypts the connection response by calling crypto.anon_crypt with the Steward verkey.
The Anonymous-encryption schema is designed for the sending of messages to a Recipient which has been given its public key. Only the Recipient can decrypt these messages, using its private key. While the Recipient can verify the integrity of the message, it cannot verify the identity of the Sender.

Faber Agent
anoncrypted_connection_response = await crypto.anon_crypt(faber['steward_key_for_faber'], connection_response.encode('utf-8'))

	Faber sends the anonymously encrypted connection response to the Steward.

	Steward anonymously decrypts the connection response by calling crypto.anon_decrypt.

Steward Agent
decrypted_connection_response = \
 (await crypto.anon_decrypt(steward['wallet'], steward['key_for_faber'], anoncrypted_connection_response)).decode("utf-8")

	Steward authenticates Faber by the comparison of Nonce.

Steward Agent
assert connection_request['nonce'] == decrypted_connection_response['nonce']

	Steward sends the NYM transaction for Faber’s DID to the Ledger.
Please note that despite the fact that the Steward is the sender of this transaction the owner of the DID will be Faber as it uses the verkey as provided by Faber.

Steward Agent
nym_request = await ledger.build_nym_request(steward['did'], decrypted_connection_response['did'], decrypted_connection_response['verkey'], None, role)
await ledger.sign_and_submit_request(steward['pool'], steward['wallet'], steward['did'], nym_request)

At this point Faber is connected to the Steward and can interact in a secure peer-to-peer way. Faber can trust the response is from Steward because:

	it connects to the current endpoint

	no replay - attack is possible, due to her random challenge

	it knows the verification key used to verify Steward digital signature is the correct one because it just confirmed it on the ledger

Note: All parties must not use the same DID’s to establish other relationships.
By having independent pairwise relationships, you’re reducing the ability for others to correlate your activities across multiple interactions.

Getting Verinym

It is important to understand that earlier created Faber DID is not, in and of itself, the same thing as self-sovereign identity. This DID must be used only for secure interaction with the Steward.
After the connection is established Faber must create a new DID record that he will use as Verinym in the Ledger.

	Faber creates a new DID in its wallet by calling did.create_and_store_my_did.

Faber Agent
(faber['did'], faber['key']) = await did.create_and_store_my_did(faber['wallet'], "{}")

	Faber prepares the message that will contain the created DID and verkey.

Faber Agent
faber['did_info'] = json.dumps({
 'did': faber['did'],
 'verkey': faber['key']
})

	Faber authenticates and encrypts the message by calling crypto.auth_crypt function, which is an implementation of the authenticated-encryption schema. Authenticated encryption is designed for sending of a confidential message specifically for the Recipient. The Sender can compute a shared secret key using the Recipient’s public key (verkey) and his secret (signing) key. The Recipient can compute exactly the same shared secret key using the Sender’s public key (verkey) and his secret (signing) key. That shared secret key can be used to verify that the encrypted message was not tampered with, before eventually decrypting it.

Faber Agent
authcrypted_faber_did_info_json = \
 await crypto.auth_crypt(faber['wallet'], faber['key_for_steward'], faber['steward_key_for_faber, faber['did_info'].encode('utf-8'))

	Faber sends the encrypted message to the Steward.

	Steward decrypts the received message by calling crypto.auth_decrypt.

Steward Agent
sender['faber_key_for_steward'], authdecrypted_faber_did_info_json = \
 await crypto.auth_decrypt(steward['wallet'], steward['key_for_faber'], authcrypted_faber_did_info_json)
faber_did_info = json.loads(authdecrypted_faber_did_info_json)

	Steward asks the ledger for the Verification key of Faber’s DID by calling did.key_for_did.

Steward Agent
steward['faber_key_for_steward'] = await did.key_for_did(steward['pool'], steward['wallet'], ['faber_did_for_steward'])

	Steward authenticates Faber by comparison of the Message Sender Verkey and the Faber Verkey received from the Ledger.

Steward Agent
assert sender_verkey == steward['faber_key_for_steward']

	Steward sends the corresponded NYM transaction to the Ledger with TRUST ANCHOR role.
Please note that despite the fact that the Steward is the sender of this transaction the owner of DID will be Faber as it uses Verkey provided by Faber.

Steward Agent
nym_request = await ledger.build_nym_request(steward['did'], decrypted_faber_did_info_json['did'],
 decrypted_faber_did_info_json['verkey'], None, 'TRUST_ANCHOR')
await ledger.sign_and_submit_request(steward['pool'], steward['wallet'], steward['did'], nym_request)

At this point Faber has a DID related to his identity in the Ledger.

Acme, Thrift Bank, and Government must pass the same Onboarding process connection establishment with Steward.

Step 5: Credential Schemas Setup

Credential Schema is the base semantic structure that describes the list of attributes which one particular Credential can contain.

Note: It’s not possible to update an existing Schema. So, if the Schema needs to be evolved, a new Schema with a new version or name needs to be created.

A Credential Schema can be created and saved in the Ledger by any Trust Anchor.

Here is where the Government creates and publishes the Transcript Credential Schema to the Ledger:

	The Trust Anchor creates the Credential Schema by calling the anoncreds.issuer_create_schema that returns the generated Credential Schema.

Government Agent
transcript = {
 'name': 'Transcript',
 'version': '1.2',
 'attributes': ['first_name', 'last_name', 'degree', 'status', 'year', 'average', 'ssn']
}
(government['transcript_schema_id'], government['transcript_schema']) = \
 await anoncreds.issuer_create_schema(government['did'], transcript['name'], transcript['version'],
 json.dumps(transcript['attributes']))
transcript_schema_id = government['transcript_schema_id']

	The Trust Anchor sends the corresponding Schema transaction to the Ledger by consistently calling the ledger.build_schema_request to build the Schema request and ledger.sign_and_submit_request to send the created request.

Government Agent
schema_request = await ledger.build_schema_request(government['did'], government['transcript_schema'])
await ledger.sign_and_submit_request(government['pool'], government['wallet'], government['did'], schema_request)

In the same way Government creates and publishes the Job-Certificate Credential Schema to the Ledger:

 # Government Agent
 job_certificate = {
 'name': 'Job-Certificate',
 'version': '0.2',
 'attributes': ['first_name', 'last_name', 'salary', 'employee_status', 'experience']
 }
 (government['job_certificate_schema_id'], government['job_certificate_schema']) = \
 await anoncreds.issuer_create_schema(government['did'], job_certificate['name'], job_certificate['version'],
 json.dumps(job_certificate['attributes']))
 job_certificate_schema_id = government['job_certificate_schema_id']

 schema_request = await ledger.build_schema_request(government['did'], government['job_certificate_schema'])
 await ledger.sign_and_submit_request(government['pool'], government['wallet'], government['did'], schema_request)

At this point we have the Transcript and the Job-Certificate Credential Schemas published by Government to the Ledger.

Step 6: Credential Definition Setup

Credential Definition is similar in that the keys that the Issuer uses for the signing of Credentials also satisfies a specific Credential Schema.

Note It’s not possible to update data in an existing Credential Definition. So, if a CredDef needs to be evolved (for example, a key needs to be rotated), then a new Credential Definition needs to be created by a new Issuer DID.

A Credential Definition can be created and saved in the Ledger by any Trust Anchor. Here Faber creates and publishes a Credential Definition for the known Transcript Credential Schema to the Ledger.

	The Trust Anchor gets the specific Credential Schema from the Ledger by consistently calling the ledger.build_get_schema_request to build the GetSchema request, ledger.sign_and_submit_request to send the created request and the ledger.parse_get_schema_response to get the Schema in the format required by Anoncreds API from the GetSchema response.

Faber Agent
get_schema_request = await ledger.build_get_schema_request(faber['did'], transcript_schema_id)
get_schema_response = await ledger.submit_request(faber['pool'], get_schema_request)
faber['transcript_schema_id'], faber['transcript_schema'] = await ledger.parse_get_schema_response(get_schema_response)

	The Trust Anchor creates the Credential Definition related to the received Credential Schema by calling anoncreds.issuer_create_and_store_credential_def that returns the generated public Credential Definition.
The private Credential Definition part for this Credential Schema will be stored in the wallet too, but it is impossible to read it directly.

Faber Agent
transcript_cred_def = {
 'tag': 'TAG1',
 'type': 'CL',
 'config': {"support_revocation": False}
}
(faber['transcript_cred_def_id'], faber['transcript_cred_def']) = \
 await anoncreds.issuer_create_and_store_credential_def(faber['wallet'], faber['did'],
 faber['transcript_schema'], transcript_cred_def['tag'],
 transcript_cred_def['type'],
 json.dumps(transcript_cred_def['config']))

	The Trust Anchor sends the corresponding CredDef transaction to the Ledger by consistently calling the ledger.build_cred_def_request to build the CredDef request and the ledger.sign_and_submit_request to send the created request.

Faber Agent
cred_def_request = await ledger.build_cred_def_request(faber['did'], faber['transcript_cred_def'])
await ledger.sign_and_submit_request(faber['pool'], faber['wallet'], faber['did'], cred_def_request)

The same way Acme creates and publishes a Credential Definition for the known Job-Certificate Credential Schema to the Ledger.

 # Acme Agent
 get_schema_request = await ledger.build_get_schema_request(acme['did'], job_certificate_schema_id)
 get_schema_response = await ledger.submit_request(acme['pool'], get_schema_request)
 acme['job_certificate_schema_id'], acme['job_certificate_schema'] = await ledger.parse_get_schema_response(get_schema_response)

 job_certificate_cred_def = {
 'tag': 'TAG1',
 'type': 'CL',
 'config': {"support_revocation": False}
 }
 (acme['job_certificate_cred_def_id'], acme['job_certificate_cred_def']) = \
 await anoncreds.issuer_create_and_store_credential_def(acme['wallet'], acme['did'],
 acme['job_certificate_schema'], job_certificate_cred_def['tag'],
 job_certificate_cred_def['type'],
 json.dumps(job_certificate_cred_def['config']))

 cred_def_request = await ledger.build_cred_def_request(acme['did'], acme['job_certificate_cred_def'])
 await ledger.sign_and_submit_request(acme['pool'], acme['wallet'], acme['did'], cred_def_request)

Acme anticipates revoking **Job-Certificate* credentials. It decides to create a revocation registry. One of Hyperledger Indy’s revocation registry types uses cryptographic accumulators for publishing revoked credentials. For details about the inner working of those accumulators see here [https://github.com/fabienpe/indy-sdk/blob/master/docs/concepts/revocation/cred-revocation.md]). The use of those accumulators requires the publication of “validity tails” outside of the Ledger. For the purpose of this demo, the validity tails are written in a file using a ‘blob storage’.

 # Acme Agent
 acme['tails_writer_config'] = json.dumps({'base_dir': "/tmp/indy_acme_tails", 'uri_pattern': ''})
 tails_writer = await blob_storage.open_writer('default', acme['tails_writer_config'])

Once the validity tails are configured, Acme can create a new revocation registry for the given credential definition.

 # Acme Agent
 (acme['revoc_reg_id'], acme['revoc_reg_def'], acme['revoc_reg_entry']) = \
 await anoncreds.issuer_create_and_store_revoc_reg(acme['wallet'], acme['did'], 'CL_ACCUM', 'TAG1',
 acme['job_certificate_cred_def_id'],
 json.dumps({'max_cred_num': 5,
 'issuance_type': 'ISSUANCE_ON_DEMAND'}),
 tails_writer)

 acme['revoc_reg_def_request'] = await ledger.build_revoc_reg_def_request(acme['did'], acme['revoc_reg_def'])
 await ledger.sign_and_submit_request(acme['pool'], acme['wallet'], acme['did'], acme['revoc_reg_def_request'])

 acme['revoc_reg_entry_request'] = \
 await ledger.build_revoc_reg_entry_request(acme['did'], acme['revoc_reg_id'], 'CL_ACCUM',
 acme['revoc_reg_entry'])
 await ledger.sign_and_submit_request(acme['pool'], acme['wallet'], acme['did'], acme['revoc_reg_entry_request'])

At this point we have a Credential Definition (supporting revocation) for the Job-Certificate Credential Schema published by Acme and a Credential Definition for the Transcript Credential Schema published by Faber.

Alice Gets a Transcript

A credential is a piece of information about an identity — a name, an age, a credit score… It is information claimed to be true. In this case, the credential is named, “Transcript”.

Credentials are offered by an issuer.

An issuer may be any identity owner known to the Ledger and any issuer may issue a credential about any identity owner it can identify.

The usefulness and reliability of a credential are tied to the reputation of the issuer with respect to the credential at hand.
For Alice to self-issue a credential that she likes chocolate ice cream may be perfectly reasonable, but for her to self-issue a credential that she graduated from Faber College should not impress anyone.

As we mentioned in About Alice, Alice graduated from Faber College.
After Faber College had established a connection with Alice, it created for her a Credential Offer about the issuance of the Transcript Credential.

 # Faber Agent
 faber['transcript_cred_offer'] = await anoncreds.issuer_create_credential_offer(faber['wallet'], faber['transcript_cred_def_id'])

Note: All messages sent between actors are encrypted using Authenticated-encryption scheme.

The value of this Transcript Credential is that it is provably issued by Faber College.

Alice wants to see the attributes that the Transcript Credential contains.
These attributes are known because a Credential Schema for Transcript has been written to the Ledger.

 # Alice Agent
 get_schema_request = await ledger.build_get_schema_request(alice['did_for_faber'], alice['transcript_cred_offer']['schema_id'])
 get_schema_response = await ledger.submit_request(alice['pool'], get_schema_request)
 transcript_schema = await ledger.parse_get_schema_response(get_schema_response)

 print(transcript_schema['data'])
 # Transcript Schema:
 {
 'name': 'Transcript',
 'version': '1.2',
 'attr_names': ['first_name', 'last_name', 'degree', 'status', 'year', 'average', 'ssn']
 }

However, the Transcript Credential has not been delivered to Alice yet in a usable form. Alice wants to use that Credential.
To get it, Alice needs to request it, but first she must create a Master Secret.

Note: A Master Secret is an item of Private Data used by a Prover to guarantee that a credential uniquely applies to them. The Master Secret is an input that combines data from multiple Credentials to prove that the Credentials have a common subject (the Prover). A Master Secret should be known only to the Prover.

Alice creates Master Secret in her wallet.

 # Alice Agent
 alice['master_secret_id'] = await anoncreds.prover_create_master_secret(alice['wallet'], None)

Alice also needs to get the Credential Definition corresponding to the cred_def_id in the Transcript Credential Offer.

 # Alice Agent
 get_cred_def_request = await ledger.build_get_cred_def_request(alice['did_for_faber'], alice['transcript_cred_offer']['cred_def_id'])
 get_cred_def_response = await ledger.submit_request(alice['pool'], get_cred_def_request)
 alice['transcript_cred_def'] = await ledger.parse_get_cred_def_response(get_cred_def_response)

Now Alice has everything to create a Credential Request of the issuance of the Faber Transcript Credential.

 # Alice Agent
 (alice['transcript_cred_request'], alice['transcript_cred_request_metadata']) = \
 await anoncreds.prover_create_credential_req(alice['wallet'], alice['did_for_faber'], alice['transcript_cred_offer'],
 alice['transcript_cred_def'], alice['master_secret_id'])

Faber prepares both raw and encoded values for each attribute in the Transcript Credential Schema.
Faber creates the Transcript Credential for Alice.

 # Faber Agent
 # note that encoding is not standardized by Indy except that 32-bit integers are encoded as themselves. IS-786
 transcript_cred_values = json.dumps({
 "first_name": {"raw": "Alice", "encoded": "1139481716457488690172217916278103335"},
 "last_name": {"raw": "Garcia", "encoded": "5321642780241790123587902456789123452"},
 "degree": {"raw": "Bachelor of Science, Marketing", "encoded": "12434523576212321"},
 "status": {"raw": "graduated", "encoded": "2213454313412354"},
 "ssn": {"raw": "123-45-6789", "encoded": "3124141231422543541"},
 "year": {"raw": "2015", "encoded": "2015"},
 "average": {"raw": "5", "encoded": "5"}
 })

 faber['transcript_cred_def'], _, _ = \
 await anoncreds.issuer_create_credential(faber['wallet'], faber['transcript_cred_offer'], faber['transcript_cred_request'],
 transcript_cred_values, None, None)

Now the Transcript Credential has been issued. Alice stores it in her wallet.

 # Alice Agent
 await anoncreds.prover_store_credential(alice['wallet'], None, faber['transcript_cred_request'], faber['transcript_cred_request_metadata'],
 alice['transcript_cred'], alice['transcript_cred_def'], None)

Alice has it in her possession, in much the same way that she would hold a physical transcript that had been mailed to her.

Apply for a Job

At some time in the future, Alice would like to work for the fictional company, Acme Corp.
Normally she would browse to their website, where she would click on a hyperlink to apply for a job.
Her browser would download a connection request in which her Indy app would open; this would trigger a prompt to Alice, asking her to accept the connection with Acme Corp.
Because we’re using an Indy-SDK, the process is different, but the steps are the same.
The process of the connection establishment is the same as when Faber was accepting the Steward connection request.

After Alice had established connection with Acme, she got the Job-Application Proof Request.
A proof request is a request made by the party who needs verifiable proof of having certain attributes and the solving of predicates that can be provided by other verified credentials.

In this case, Acme Corp is requesting that Alice provide a Job Application.
The Job Application requires a name, degree, status, SSN and also the satisfaction of the condition about the average mark or grades.

In this case, Job-Application Proof Request looks like:

 # Acme Agent
 acme['job_application_proof_request'] = json.dumps({
 'nonce': '1432422343242122312411212',
 'name': 'Job-Application',
 'version': '0.1',
 'requested_attributes': {
 'attr1_referent': {
 'name': 'first_name'
 },
 'attr2_referent': {
 'name': 'last_name'
 },
 'attr3_referent': {
 'name': 'degree',
 'restrictions': [{'cred_def_id': faber['transcript_cred_def_id']}]
 },
 'attr4_referent': {
 'name': 'status',
 'restrictions': [{'cred_def_id': faber['transcript_cred_def_id']}]
 },
 'attr5_referent': {
 'name': 'ssn',
 'restrictions': [{'cred_def_id': faber['transcript_cred_def_id']}]
 },
 'attr6_referent': {
 'name': 'phone_number'
 }
 },
 'requested_predicates': {
 'predicate1_referent': {
 'name': 'average',
 'p_type': '>=',
 'p_value': 4,
 'restrictions': [{'cred_def_id': faber['transcript_cred_def_id']}]
 }
 }
 })

Notice that some attributes are verifiable and some are not.

The proof request says that SSN, degree, and graduation status in the Credential must be formally asserted by an issuer and schema_key. Notice also that the first_name, last_name and phone_number are not required to be verifiable.
By not tagging these credentials with a verifiable status, Acme’s credential request is saying it will accept Alice’s own credential about her names and phone numbers.

To show Credentials that Alice can use for the creating of Proof for the Job-Application Proof Request Alice calls anoncreds.prover_get_credentials_for_proof_req.

 # Alice Agent
 creds_for_job_application_proof_request = json.loads(
 await anoncreds.prover_get_credentials_for_proof_req(alice['wallet'], alice['job_application_proof_request']))

Alice has only one credential that meets proof the requirements for this Job Application.

 # Alice Agent
 {
 'referent': 'Transcript Credential Referent',
 'attrs': {
 'first_name': 'Alice',
 'last_name': 'Garcia',
 'status': 'graduated',
 'degree': 'Bachelor of Science, Marketing',
 'ssn': '123-45-6789',
 'year': '2015',
 'average': '5'
 },
 'schema_id': job_certificate_schema_id,
 'cred_def_id': faber_transcript_cred_def_id,
 'rev_reg_id': None,
 'cred_rev_id': None
 }

Now Alice can divide these attributes into the three groups:

	attributes values of which will be revealed

	attributes values of which will be unrevealed

	attributes for which creating of verifiable proof is not required

For the Job-Application Proof Request Alice divided the attributes as follows:

 # Alice Agent
 alice['job_application_requested_creds'] = json.dumps({
 'self_attested_attributes': {
 'attr1_referent': 'Alice',
 'attr2_referent': 'Garcia',
 'attr6_referent': '123-45-6789'
 },
 'requested_attributes': {
 'attr3_referent': {'cred_id': cred_for_attr3['referent'], 'revealed': True},
 'attr4_referent': {'cred_id': cred_for_attr4['referent'], 'revealed': True},
 'attr5_referent': {'cred_id': cred_for_attr5['referent'], 'revealed': True},
 },
 'requested_predicates': {'predicate1_referent': {'cred_id': cred_for_predicate1['referent']}}
 })

In addition, Alice must get the Credential Schema and corresponding Credential Definition for each used Credential, the same way, as on the step used to in the creation of the Credential Request.

Now Alice has everything to create the Proof for Acme Job-Application Proof Request.

 # Alice Agent
 alice['apply_job_proof'] = \
 await anoncreds.prover_create_proof(alice['wallet'], alice['job_application_proof_request'], alice['job_application_requested_creds'],
 alice['master_secret_id'], alice['schemas'], alice['cred_defs'], alice['revoc_states'])

When Acme inspects the received Proof he will see following structure:

 # Acme Agent
 {
 'requested_proof': {
 'revealed_attrs': {
 'attr4_referent': {'sub_proof_index': 0, 'raw':'graduated', 'encoded':'2213454313412354'},
 'attr5_referent': ['sub_proof_index': 0, 'raw':'123-45-6789', 'encoded':'3124141231422543541'},
 'attr3_referent': ['sub_proof_index': 0, 'raw':'Bachelor of Science, Marketing', 'encoded':'12434523576212321'}
 },
 'self_attested_attrs': {
 'attr1_referent': 'Alice',
 'attr2_referent': 'Garcia',
 'attr6_referent': '123-45-6789'
 },
 'unrevealed_attrs': {},
 'predicates': {
 'predicate1_referent': {'sub_proof_index': 0}
 }
 },
 'proof' : [] # Validity Proof that Acme can check
 'identifiers' : [# Identifiers of credentials were used for Proof building
 {
 'schema_id': job_certificate_schema_id,
 'cred_def_id': faber_transcript_cred_def_id,
 'rev_reg_id': None,
 'timestamp': None
 }
 }
 }

Acme got all the requested attributes. Now Acme wants to check the Validity Proof.
To do it Acme first must get every Credential Schema and corresponding Credential Definition for each identifier presented in the Proof, the same way that Alice did it.
Now Acme has everything to check Job-Application Proof from Alice.

 # Acme Agent
 assert await anoncreds.verifier_verify_proof(acme['job_application_proof_request'], acme['apply_job_proof'],
 acme['schemas'], acme['cred_defs'], acme['revoc_ref_defs'], acme['revoc_regs'])

Here, we’ll assume the application is accepted and Alice ends up getting the job.
Acme creates new Credential Offer for Alice.

 # Acme Agent
 acme['job_certificate_cred_offer'] = await anoncreds.issuer_create_credential_offer(acme['wallet'], acme['job_certificate_cred_def_id'])

When Alice inspects her connection with Acme, she sees that a new Credential Offer is available.

Apply for a Loan

Now that Alice has a job, she’d like to apply for a loan. That will require a proof of employment.
She can get this from the Job-Certificate credential offered by Acme.
Alice goes through a familiar sequence of interactions.

	First she creates a Credential Request.

 # Alice Agent
 (alice['job_certificate_cred_request'], alice['job_certificate_cred_request_metadata']) = \
 await anoncreds.prover_create_credential_req(alice['wallet'], alice['did_for_acme'], alice['job_certificate_cred_offer'],
 alice['acme_job_certificate_cred_def'], alice['master_secret_id'])

	Acme issues a Job-Certificate Credential for Alice.

 # Acme Agent
 alice_job_certificate_cred_values_json = json.dumps({
 "first_name": {"raw": "Alice", "encoded": "245712572474217942457235975012103335"},
 "last_name": {"raw": "Garcia", "encoded": "312643218496194691632153761283356127"},
 "employee_status": {"raw": "Permanent", "encoded": "2143135425425143112321314321"},
 "salary": {"raw": "2400", "encoded": "2400"},
 "experience": {"raw": "10", "encoded": "10"}
 })

One difference with the ussuance of the Transcript by Faber here is that a Job-Certificate can be revoked and the credential creation takes the ID of the revocation registry created earlier by Acme and a handle to the blob storage containing the validity tails:

 # Acme Agent
 acme['blob_storage_reader_cfg_handle'] = await blob_storage.open_reader('default', acme['tails_writer_config'])
 acme['job_certificate_cred'], acme['job_certificate_cred_rev_id'], acme['alice_cert_rev_reg_delta'] = \
 await anoncreds.issuer_create_credential(acme['wallet'], acme['job_certificate_cred_offer'],
 acme['job_certificate_cred_request'],
 acme['job_certificate_cred_values'],
 acme['revoc_reg_id'],
 acme['blob_storage_reader_cfg_handle'])

Furthermore Acme must publish a revocation registry entry on the Ledger so other parties can verify later the revocation state of the credential.

 # Acme agent
 acme['revoc_reg_entry_req'] = \
 await ledger.build_revoc_reg_entry_request(acme['did'], acme['revoc_reg_id'], 'CL_ACCUM',
 acme['alice_cert_rev_reg_delta'])
 await ledger.sign_and_submit_request(acme['pool'], acme['wallet'], acme['did'], acme['revoc_reg_entry_req'])

When Alice receives her Job-Certificate credential from Acme, she should request the revocation registry definition from the Ledger before storing the credential.

 # Alice Agent
 alice['acme_revoc_reg_des_req'] = \
 await ledger.build_get_revoc_reg_def_request(alice['did_for_acme'],
 alice_job_certificate_cred['rev_reg_id'])
 alice['acme_revoc_reg_des_resp'] = await ledger.submit_request(alice['pool'], alice['acme_revoc_reg_des_req'])
 (alice['acme_revoc_reg_def_id'], alice['acme_revoc_reg_def_json']) = \
 await ledger.parse_get_revoc_reg_def_response(alice['acme_revoc_reg_des_resp'])

Now the Job-Certificate Credential has been issued and Alice now has it in her possession. Alice stores Job-Certificate Credential in her wallet.

 # Alice Agent
 await anoncreds.prover_store_credential(alice['wallet'], None, alice['job_certificate_cred_request_metadata'],
 alice['job_certificate_cred'], alice['acme_job_certificate_cred_def'], alice['acme_revoc_reg_def_json'])

She can use it when she applies for her loan, in much the same way that she used her transcript when applying for a job.

There is a disadvantage in this approach to data sharing though, — it may disclose more data than what is strictly necessary. If all Alice needs to do is provide proof of employment, this can be done with an anonymous credential instead. Anonymous credentials may prove certain predicates without disclosing actual values (e.g., Alice is employed full-time, with a salary greater than X, along with her hire date, but her actually salary remains hidden). A compound proof can be created, drawing from credentials from both Faber College and Acme Corp, that discloses only what is necessary.

Alice now establishes connection with Thrift Bank.

Alice gets a Loan-Application-Basic Proof Request from Thrift Bank that looks like:

 # Thrift Agent
 thrift['apply_loan_proof_request'] = json.dumps({
 'nonce': '123432421212',
 'name': 'Loan-Application-Basic',
 'version': '0.1',
 'requested_attributes': {
 'attr1_referent': {
 'name': 'employee_status',
 'restrictions': [{'cred_def_id': acme_job_certificate_cred_def_id}]
 }
 },
 'requested_predicates': {
 'predicate1_referent': {
 'name': 'salary',
 'p_type': '>=',
 'p_value': 2000,
 'restrictions': [{'cred_def_id': acme_job_certificate_cred_def_id}]
 },
 'predicate2_referent': {
 'name': 'experience',
 'p_type': '>=',
 'p_value': 1,
 'restrictions': [{'cred_def_id': acme_job_certificate_cred_def_id}]
 }
 },
 'non_revoked': {'to': int(time.time())}
 })

The last line indicates that the Job-Certificate provided should not be revoked by the application time.

Alice has only one credential that meets the proof requirements for this Loan-Application-Basic Proof Request.

 # Alice Agent
 {
 'referent': 'Job-Certificate Credential Referent',
 'revoc_reg_seq_no': None,
 'schema_id': job_certificate_schema_id,
 'cred_def_id': acme_job_certificate_cred_def_id,
 'attrs': {
 'employee_status': 'Permanent',
 'last_name': 'Garcia',
 'experience': '10',
 'first_name': 'Alice',
 'salary': '2400'
 }
 }

For the Loan-Application-Basic Proof Request Alice divided attributes as follows. She can get the validity time stamp for each attribute from the revocation states queried from the Ledger:

 # Alice Agent
 revoc_states_for_loan_app = json.loads(alice['revoc_states_for_loan_app'])
 timestamp_for_attr1 = await get_timestamp_for_attribute(cred_for_attr1, revoc_states_for_loan_app)
 timestamp_for_predicate1 = await get_timestamp_for_attribute(cred_for_predicate1, revoc_states_for_loan_app)
 timestamp_for_predicate2 = await get_timestamp_for_attribute(cred_for_predicate2, revoc_states_for_loan_app)
 alice['apply_loan_requested_creds'] = json.dumps({
 'self_attested_attributes': {},
 'requested_attributes': {
 'attr1_referent': {'cred_id': cred_for_attr1['referent'], 'revealed': True, 'timestamp': timestamp_for_attr1}
 },
 'requested_predicates': {
 'predicate1_referent': {'cred_id': cred_for_predicate1['referent'], 'timestamp': timestamp_for_predicate1},
 'predicate2_referent': {'cred_id': cred_for_predicate2['referent'], 'timestamp': timestamp_for_predicate2}
 }
 })

Alice creates the Proof for the Loan-Application-Basic Proof Request.

 # Alice Agent
 alice['apply_loan_proof'] = \
 await anoncreds.prover_create_proof(alice['wallet'], alice['apply_loan_proof_request'],
 alice['apply_loan_requested_creds'], alice['master_secret_id'],
 alice['schemas_for_loan_app'], alice['cred_defs_for_loan_app'],
 alice['revoc_states_for_loan_app'])

Alice sends just the Loan-Application-Basic proof to the bank.
This allows her to minimize the PII (personally identifiable information) that she has to share when all she’s trying to do right now is prove basic eligibility.

When Thrift inspects the received Proof he will see following structure:

 # Thrift Agent
 {
 'requested_proof': {
 'revealed_attrs': {
 'attr1_referent': {'sub_proof_index': 0, 'raw': 'Permanent', 'encoded':'2143135425425143112321314321'},
 },
 'self_attested_attrs': {},
 'unrevealed_attrs': {},
 'predicates': {
 'predicate1_referent': {'sub_proof_index': 0},
 'predicate2_referent': {'sub_proof_index': 0}
 }
 },
 'proof' : [] # Validity Proof that Thrift can check
 'identifiers' : [# Identifiers of credentials were used for Proof building
 'schema_id': acme['job_certificate_schema_id'],
 'cred_def_id': acme['job_certificate_cred_def_id'],
 'rev_reg_id': acme['revoc_reg_id'],
 'timestamp': 1550503925 # A integer timestamp
]
 }

Thrift Bank successfully verified the Loan-Application-Basic Proof from Alice.

 # Thrift Agent
 assert await anoncreds.verifier_verify_proof(thrift['apply_loan_proof_request'],
 thrift['alice_apply_loan_proof'],
 thrift['schemas_for_loan_app'],
 thrift['cred_defs_for_loan_app'],
 thrift['revoc_defs_for_loan_app'],
 thrift['revoc_regs_for_loan_app'])

Thrift Bank sends the second Proof Request where Alice needs to share her personal information with the bank.

 # Thrift Agent
 thrift['apply_loan_kyc_proof_request'] = json.dumps({
 'nonce': '123432421212',
 'name': 'Loan-Application-KYC',
 'version': '0.1',
 'requested_attributes': {
 'attr1_referent': {'name': 'first_name'},
 'attr2_referent': {'name': 'last_name'},
 'attr3_referent': {'name': 'ssn'}
 },
 'requested_predicates': {}
 })

Alice has two credentials that meets the proof requirements for this Loan-Application-KYC Proof Request.

 # Alice Agent
 {
 'referent': 'Transcript Credential Referent',
 'schema_id': transcript_schema_id,
 'cred_def_id': faber_transcript_cred_def_id,
 'attrs': {
 'first_name': 'Alice',
 'last_name': 'Garcia',
 'status': 'graduated',
 'degree': 'Bachelor of Science, Marketing',
 'ssn': '123-45-6789',
 'year': '2015',
 'average': '5'
 },
 'rev_reg_id': None,
 'cred_rev_id': None
 },
 {
 'referent': 'Job-Certificate Credential Referent',
 'schema_key': job_certificate_schema_id,
 'cred_def_id': acme_job_certificate_cred_def_id,
 'attrs': {
 'employee_status': 'Permanent',
 'last_name': 'Garcia',
 'experience': '10',
 'first_name': 'Alice',
 'salary': '2400'
 },
 'rev_reg_id': None,
 'revoc_reg_seq_no': None
 }

For the Loan-Application-KYC Proof Request Alice divided attributes as follows:

 # Alice Agent
 alice['apply_loan_kyc_requested_creds'] = json.dumps({
 'self_attested_attributes': {},
 'requested_attributes': {
 'attr1_referent': {'cred_id': cred_for_attr1['referent'], 'revealed': True},
 'attr2_referent': {'cred_id': cred_for_attr2['referent'], 'revealed': True},
 'attr3_referent': {'cred_id': cred_for_attr3['referent'], 'revealed': True}
 },
 'requested_predicates': {}
 })

Alice creates the Proof for Loan-Application-KYC Proof Request.

 # Alice Agent
 alice['apply_loan_kyc_proof'] = \
 await anoncreds.prover_create_proof(alice['wallet'], alice['apply_loan_kyc_proof_request'], alice['apply_loan_kyc_requested_creds'],
 alice['alice_master_secret_id'], alice['schemas'], alice['cred_defs'], alice['revoc_states'])

When Thrift inspects the received Proof he will see following structure:

 # Thrift Agent
 {
 'requested_proof': {
 'revealed_attributes': {
 'attr1_referent': {'sub_proof_index': 0, 'raw':'123-45-6789', 'encoded':'3124141231422543541'},
 'attr1_referent': {'sub_proof_index': 1, 'raw':'Alice', 'encoded':'245712572474217942457235975012103335'},
 'attr1_referent': {'sub_proof_index': 1, 'raw':'Garcia', 'encoded':'312643218496194691632153761283356127'},
 },
 'self_attested_attrs': {},
 'unrevealed_attrs': {},
 'predicates': {}
 },
 'proof' : [] # Validity Proof that Thrift can check
 'identifiers' : [# Identifiers of credentials were used for Proof building
 {
 'schema_id': transcript_schema_id,
 'cred_def_id': faber['transcript_cred_def_id'],
 'rev_reg_id': None,
 'timestamp': None
 },
 {
 'schema_key': job_certificate_schema_id,
 'cred_def_id': acme['job_certificate_cred_def_id'],
 'rev_reg_id': None,
 'timestamp': None
 }
]
 }

Thrift Bank has successfully validated the Loan-Application-KYC Proof from Alice.

 # Thrift Agent
 assert await anoncreds.verifier_verify_proof(thrift['apply_loan_kyc_proof_request'], thrift['alice_apply_loan_kyc_proof'],
 thrift['schemas'], thrift['cred_defs'], thrift['revoc_defs'], thrift['revoc_regs'])

Both of Alice’s Proofs have been successfully verified and she got loan from Thrift Bank.

Alice Quits her Job

Later, Alice decides to quit her job so Acme revokes the Job-Certificate credential:

 # Acme Agent
 await anoncreds.issuer_revoke_credential(acme['wallet'],
 acme['blob_storage_reader_cfg_handle'],
 acme['revoc_reg_id'],
 acme['job_certificate_cred_rev_id'])

Acme then just needs to publish the revocation on the ledger calling ledger.build_revoc_reg_entry_request and ledger.sign_and_submit_request.

If Alice tries to apply for a loan (Loan-Application-Basic) again, the proof verification will then fail.

Explore the Code

Now that you’ve had a chance to see how the Libindy implementation works from the outside, perhaps you’d like to see how it works underneath, from code?
If so, please run Simulating Getting Started in the Jupiter.
You may need to be signed into GitHub to view this link.
Also you can find the source code here [https://github.com/hyperledger/indy-sdk/blob/master/samples/python/src/getting_started.py]

If demo gives an error when executing check Trouble Shooting Guide.

 Indy Getting Started

Indy Getting Started

Running getting-started with docker-compose

Prerequisites

Clone the indy-sdk: git clone https://github.com/hyperledger/indy-sdk.git
Navigate to the getting started folder `cd indy-sdk/docs/getting-started

docker and docker-compose should be installed.

Run

Run docker in the getting-started folder: docker-compose up

The command above will create getting-started (the jupyter notebook) and indy_pool (collection of the validator nodes) images if they hasn’t been done yet, create containers and run them.The validators run by default on IP 10.0.0.2, this can be changed by changing pool_ip in the docker-compose file.To get Jupyter click on the link in output (it must have following format: http://0.0.0.0:8888/?token=)

Stop

docker-compose down
The command above will stop and delete created network and containers.

Trouble Shooting

If demo gives an error when executing in Jupyter check Trouble Shooting Guide.

 TROUBLE SHOOTING Getting - Started Guide (GSG)

TROUBLE SHOOTING Getting - Started Guide (GSG)

If you setup the demo and encounter a 307 error recommend to take the following steps to cleanup and start over. The communication with the ledger is affected and it is not possible to run the demo. Here are some recommendations for other errors.

	306: you already have a configured ledger. Perform clean start.

	301: you are trying to create a ledger but it is already configured. A single failure will cause a problem when opening the ledger. Perform clean install.

	212: wallet is not found. When this occur stop and start container: Ctrl-C, docker-compose down, docker-compose up

Overview steps for clean start

	Remove existing instances

	Reset source files

	Perform a new build

	Start demo

Steps in detail

	Make sure containers are closed

docker-compose down # to make sure containers are closed
docker image ls # find image names that need to be removed in next step
docker image rm getting-started
docker image rm indy_pool
docker volume ls # find volume name that needs to be removed in next step
docker volume rm gettingstarted_sandbox

	Reset source files

git checkout <branch_name>
git reset --hard **WARNING** : make copies of any changes you want to keep prior to taking this step
git fetch --all
git pull

	Perform a new build

docker-compose build --no-cache # adding no cache to make clean build

	Start demo

docker-compose up

 Key Concepts

Key Concepts

Core concepts to understand the Indy SDK

	Revocation
	Background: Cryptographic Accumulators

	Background: Tails Files

	Setup

	How Revocation Will Be Tested

	Preparing for Revocation at Issuance

	Presenting Proof of Non-Revocation

	Putting It All Together

	Wallets
	Key Credentials

	Cases

 How Credential Revocation Works

How Credential Revocation Works

This doc aims to explain credential revocation at a conceptual level.
If this doc still feels too low-level, you might consider watching this
introductory video [https://drive.google.com/open?id=1FxdgkYwwLfpln6MnsZJAwnYjM6LpCoP0] from time offset 0:30 to 4:30.

Background: Cryptographic Accumulators

Before explaining the mechanism in detail, it’s necessary to understand
cryptographic accumulators at a very high level.
We will try to avoid daunting math in our explanation.

You can think of an accumulator as the product of multiplying many numbers
together. In the equation a * b * c * d = e,
the accumulator would be e;
it accumulates a value as each new factor is multiplied in. We could
plug in numbers; if a=2 and b=3 and c=5 and d=7, then our accumulator
e has a value of 210. If e has this value, we
say that 3 is “in” e because it is a factor. If we want to take 3 out
of the accumulator, we divide 210 by 3 and get 70 (=2 * 5 * 7); 3 has now been
“removed”.

Notice that you can also produce e by multiplying any single
factor such as a by the product of all the other factors (b * c * d).

The product of the other factors contributing to the accumulator (all factors
except the private one for this credential) is called a witness.

This is a useful characteristic; it means you can tell someone else
the value of a and the product of all the other inputs to the accumulator,
but not the other inputs themselves, and they can produce the output.

Background: Tails Files

In our simple example above, we only have 4 factors, and we are using small
numbers. We are also using standard arithmetic, where you can reverse
multiplication by dividing. In such a system, the contents of an accumulator
can be reverse-engineered by simple prime factorization.

To be useful for revocation, Indy’s accumulators can’t be reversible; that is,
it must be the case that the only way to derive the accumulator
value is to know the factors.
We accomplish this by using modular arithmetic (where division is undefined),
and by using massive prime numbers for factors, resulting in a very long integer
witness.

A tails file is associated with an accumulator
and its factors. It is a binary file that contains an
array of randomly generated factors for an accumulator. Instead of small
numbers like 2 and 3 and 7, these factors are massive numbers, far too
big to display conveniently on a screen. Typically the quantity of these
numeric factors in a tails file is large–hundreds of thousands to tens of
millions.

A tails file is not secret; it is published as plain text to the world
and freely downloadable by anyone. The contents of this file never change.

Each potential or actual credential issued by a particular issuer is
assigned an index to an accumulator factor in a tails file. However,
only credentials that have not been revoked contribute to the value of the
accumulator. We will see how this works, below.

[image: tails file and accumulator]

Setup

Before revocable credentials can be issued, a number of things must be
true about the ecosystem:

	A schema for each credential type
must be written to the ledger.
For example, if companies wish to issue proof of employment, then
a “Employee Credential” schema would need to be published. Similarly,
before birth certificate credentials can be issued, a “Birth Certificate”
schema would need to be defined and made available to the public. Any number
of issuers can reference the same schema. Schemas can be versioned and
evolved over time. Any individual or institution can write a schema
to the ledger; it does not require special privileges.

	Each issuer must publish on the ledger one credential
definition for each credential type they intend
to create. The definition announces the issuer’s intention to
create credentials that match a particular schema, and specifies the
keys that the issuer will use to sign such credentials. (The verkey+
signing key pair used to authenticate the issuer’s DID should be kept
separate from the keys used to sign credentials, so that each key
pair can be rotated independently; it would be bad if a sysadmin
rotated a DID keypair and accidentally invalidated all credentials
issued by an institution…)

	Each issuer must also publish on the ledger a revocation
registry. This metadata references a credential definition and
specifies how revocation for that credential type will be handled.
The revocation registry tells which cryptographic accumulator
can be used to test revocation, and gives the URI and
hash of the associated tails file.

	Each issuer must publish on the ledger an accumulator value that
describes the revocation status for all associated credentials. This
accumulator must be updated on a periodic or as-needed basis. For
example, if a driver’s license division revokes 3 licenses during a
given work day, then when they close their doors at 5 pm, they might
issue a ledger transaction that updates the accumulator value for
their driver’s license credentials, removing the 3 revoked credentials
from the accumulator. What we mean by “removing” is as described above–
the factors listed in the tails file for the indexes associated with
the 3 revoked credentials are no longer multiplied into the accumulator.

[image: before and after revocation]

How Revocation Will Be Tested

Let us now skip ahead to think about what needs to happen much later.
When a prover gives proof to a verifier, we normally think about the proof
as focusing on core information demands: What is your birthdate? Please
disclose your address. This is primary proof.

But there is another dimension of proof that’s also necessary: The prover
must demonstrate that the credentials behind the primary proof have not
been revoked. This is called proof of non-revocation.

In Indy, proof of non-revocation is accomplished by having provers show
that they can derive the value of the accumulator for their credential
using a factor for the accumulator that they know, plus the product of
all other factors.
The verifier can see that the prover produces the right answer (because
the answer is on the ledger), but does not know certain details of how the
prover derived it. The issuer can revoke by changing the answer to the
math problem in a way that defeats the prover.

Preparing for Revocation at Issuance

When a credential is issued, the actual credential file is transmitted
to the holder (who will later become a prover). In addition, the issuer
communicates two other pieces of vital information:

	The index corresponding to this credential, in the tails file. This
lets the holder look up their private factor, which we could map to
a in the simple equation from the accumulator background section
at the top of the doc.

	The witness.

Presenting Proof of Non-Revocation

When the prover needs to demonstrate that her credential is not revoked,
she shows that she can provide math that derives the accumulator value
on the ledger using her private factor times the witness. She does this
without actually disclosing what her private value is; this is important
to avoid correlation.

But there is a complication: what if the accumulator has changed value
since the time the credential was issued? In this case, the private
factor times the witness will not equal the accumulator…

This is handled by requiring accumulator updates to also publish a
witness delta as part of the same transaction.
This tells provers how to adjust their witness (referencing other indexes
in the public tails file) to bring it back into
harmony with the current value of the accumulator. Updating witnesses
requires the prover (but not the verifier) to download the tails file.

Putting It All Together

This discussion has suppressed some details. The math has been simplified,
and we haven’t discussed how an issuer copes with multiple tails files
and revocation registries, or why that might be desirable. However, the
broad flow of the mechanism should be apparent, and its features are
now easy to summarize:

	Issuers revoke by changing a number on the ledger. They can revoke
as many credentials as they want in a single transaction, since
they are just changing the answer to a math problem that either does
or doesn’t include the factors they choose. Issuers do not have to
contact anybody–provers or verifiers–to revoke. Changes take place
globally, the instant the accumulator update transaction appears
on the ledger.

	Revocation is reversible.

	Provers demonstrate proof of non-revocation in a privacy-preserving
way. They cannot be correlated by something like a credential ID or
a tails index. This is radically different from a revocation list
approach, which requires correlation to test.

	Verification of proof of non-revocation is extremely easy and cheap.
No tails files are needed by verifiers, and computation is trivial.
Proving non-revocation is somewhat more expensive for provers, but
is also not overly complex.

	Verifiers do not need to contact issuers or consult a revocation list
to test revocation.

 Indy-SDK Default Wallet Implementation

Indy-SDK Default Wallet Implementation

The purpose of this implementation is to provide a default encrypted wallet for indy-sdk.

The indy-sdk default wallet implementation uses hardened version of SQLCipher [https://www.zetetic.net/sqlcipher/]:

	HMAC-SHA256 instead of HMAC-SHA1.

	PBKDF2 100K rounds for passphrase key data instead of 64K.

	PBKDF2 10 rounds for HMAC key derivation instead of 2.

	Page size 2K instead of 1K.

Key Credentials

The default wallet allows an optional passphrase to used for encrypting the data.
If no passphrase is provided either by leaving the key blank or omitting the key, the wallet will not be encrypted but stored in SQLite3 [https://www.sqlite.org/index.html] format.
The passphrase to open the wallet is stored outside of indy-sdk and is left to the consumer’s security preference such as HSMs, TEEs, or offline methods.

indy-sdk supports a JSON parameter, credentials, for opening or creating a wallet:

{
 "key": "<passphrase>"
 "rekey": "<passphrase>"
}

If the credentials parameter is omitted or if key is an empty string, the wallet is left unencrypted.

key is the passphrase for opening the wallet and will be run through 100K rounds of PBKDF2.

If rekey is provided, the wallet will be opened using key and change the passphrase to the rekey value for future open calls.
rekey is only required for an existing wallet and throws an error when attempting to create a new wallet.

If rekey is included with [null, “”], the wallet will be decrypted.

If key is [null, “”] and rekey contains a non-empty value, the wallet will now be encrypted.

NOTE

rekey is only necessary when changing key. Otherwise it should be omitted.

Cases

Normal wallet / No passphrase

To create a non-encrypted wallet, credentials can be empty or not specified. key may also be [null, “”].

Encrypted wallet / A Key

Encrypted wallets require a passphrase to be specified in the key field.
Passphrase can be any non-blank value.

{
 "key": "Th1sIsArEALLY$3cuR3PassW0RD"
}

Normal wallet to encrypted wallet / Adding a Key

To add encryption to an existing non-encrypted wallet, key must be set to [null, “”] and rekey must be set to a valid passphrase.
Then wallet open calls are the same as the Encrypted Wallet section.

{
 "key": null,
 "rekey": "il0V3MyN3WpA$SworD"
}

Encrypted wallet to normal wallet / Removing a Key

To remove encryption from an existing encrypted wallet, key must be set to the current value and rekey must be set to a blank value [null, “”].
Then wallet open calls are the same as the Normal wallet section.

{
 "key": "Th1sIsArEALLY$3cuR3PassW0RD",
 "rekey": null
}

Updating passphrase / Changing a Key

Rotating wallet passphrases is recommended. key must be set to the current value and rekey must be set to the new value.
Then wallet open calls are the same as the Encrypted wallet section.

{
 "key": "Th1sIsArEALLY$3cuR3PassW0RD",
 "rekey": "s8c0R31tYi$hARd"
}

 How Tos

How Tos

This folder contains short tutorials demonstrating how to accomplish
common tasks with the Indy SDK. For best results, proceed through the following in order:

	Write a DID and Query Its Verkey

	Rotate a Key

	Save a Schema and Cred Def

	Issue a Credential

	Negotiate a Proof

	Send a Secure Message

 Building Indy SDK

Building Indy SDK

Below are the different instructions on how to build Indy SDK for specific platforms:

	Ubuntu

	Mac

	Windows

	RHEL

	Building binaries of LibIndy for Android

	Building binaries of Libnullpay for Android

 Setup Indy SDK build environment for Ubuntu based distro (Ubuntu 16.04)

Setup Indy SDK build environment for Ubuntu based distro (Ubuntu 16.04)

	Install Rust and rustup (https://www.rust-lang.org/install.html).

	Install required native libraries and utilities:

apt-get update && \
apt-get install -y \
 build-essential \
 pkg-config \
 cmake \
 libssl-dev \
 libsqlite3-dev \
 libzmq3-dev \
 libncursesw5-dev

	libindy requires the modern 1.0.14 version of libsodium but Ubuntu 16.04 does not support installation it’s from apt repository.
Because of this, it requires to build and install libsodium from source:

cd /tmp && \
 curl https://download.libsodium.org/libsodium/releases/old/unsupported/libsodium-1.0.14.tar.gz | tar -xz && \
 cd /tmp/libsodium-1.0.14 && \
 ./configure --disable-shared && \
 make && \
 make install && \
 rm -rf /tmp/libsodium-1.0.14

	Build libindy

git clone https://github.com/hyperledger/indy-sdk.git
cd ./indy-sdk/libindy
cargo build
cd ..

Note: libindy debian package, installed from the apt repository, is statically linked with libsodium.
For manually building this can be achieved by passing --features sodium_static into cargo build command.

	Run integration tests:
Start local nodes pool with Docker [https://github.com/hyperledger/indy-sdk/blob/master/README.md#how-to-start-local-nodes-pool-with-docker]

 If you use this method then you have to specify the TEST_POOL_IP as specified below when running the tests.

 It can be useful if we want to launch integration tests inside another container attached to
 the same docker network.

	Run tests

cd libindy
RUST_TEST_THREADS=1 cargo test

It is possible to change ip of test pool by providing of TEST_POOL_IP environment variable:

RUST_TEST_THREADS=1 TEST_POOL_IP=10.0.0.2 cargo test

	Build indy-cli (Optional)

indy-cli is dependent on libindy and should be built after it.

cd cli/
RUSTFLAGS=" -L ../libindy/target/debug" cargo build

If you have followed the instructions to build libindy above, the default build type will be debug

Make sure to add the libindy to the path. Replace /path/to with the actual path to the libindy directory. Using bash:

echo "export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/path/to/libindy/target/{BUILD TYPE}" >> ~/.bashrc
sudo ldconfig
source ~/.bashrc

To run indy-cli, navigate to cli/target/debug and run ./indy-cli

See libindy/ci/ubuntu.dockerfile [https://github.com/hyperledger/indy-sdk/tree/master/libindy/ci/ubuntu.dockerfile] for example of Ubuntu based environment creation in Docker.

 MacOS build guide

MacOS build guide

Automated build: clone the repo and run mac.build.sh in the libindy folder.

Manual steps

	Install Rust and rustup (https://www.rust-lang.org/install.html).

	Install required native libraries and utilities (libsodium is added with URL to homebrew since version<1.0.15 is required)

brew install pkg-config
brew install https://raw.githubusercontent.com/Homebrew/homebrew-core/65effd2b617bade68a8a2c5b39e1c3089cc0e945/Formula/libsodium.rb
brew install automake
brew install autoconf
brew install cmake
brew install openssl
brew install zeromq
brew install zmq

	Setup environment variables:

export PKG_CONFIG_ALLOW_CROSS=1
export CARGO_INCREMENTAL=1
export RUST_LOG=indy=trace
export RUST_TEST_THREADS=1

	Setup OPENSSL_DIR variable: path to installed openssl library

for version in `ls -t /usr/local/Cellar/openssl/`; do
 export OPENSSL_DIR=/usr/local/Cellar/openssl/$version
 break
done

	Checkout and build the library:

git clone https://github.com/hyperledger/indy-sdk.git
cd ./indy-sdk/libindy
cargo build

	To compile the CLI, libnullpay, or other items that depend on libindy:

export LIBRARY_PATH=/path/to/sdk/libindy/target/<config>
cd ../cli
cargo build

	Set your DYLD_LIBRARY_PATH and LD_LIBRARY_PATH environment variables to the path of indy-sdk/libindy/target/debug. You may want to put these in your .bash_profile to persist them.

Note on running local nodes

In order to run local nodes on MacOS, it may be necessary to set up port mapping between the Docker container
and local host. Follow the instructions in Indy SDK README [https://github.com/hyperledger/indy-sdk#how-to-start-local-nodes-pool-with-docker]

IOError while running of whole set of tests on MacOS

There is a possible case when some tests are failed if whole set of tests is run (cargo test).
But failed tests will be successful in case of separate runs.
If an error message like IOError Too many open files is present in logs when fails can be fixed by changing default limit.

ulimit -n <new limit value>

https://jira.hyperledger.org/browse/IS-1038

 Setup Indy SDK build environment for Windows

Setup Indy SDK build environment for Windows

Build Environment

	Setup a windows virtual machine. Free images are available at here [https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/]

	Launch the virtual machine

	Download Visual Studio Community Edition 2017 (these instructions also work with Visual Studio Professional 2017)

	Check the boxes for the Desktop development with C++ and Linux Development with C++

	In the summary portion on the right hand side also check C++/CLI support

	Click install

	Download git-scm for windows here [https://git-scm.com/download/win]

	Install git for windows using:

	Use Git from Git Bash Only so it doesn’t change any path settings of the command prompt

	Checkout as is, commit Unix-style line endings. You shouldn’t be commiting anything anyway but just in case

	Use MinTTY

	Check all the boxes for:

	Enable file system caching

	Enable Git Credential Manager

	Enable symbolic links

	Download rust for windows here [https://www.rust-lang.org/en-US/install.html]

	Choose installation option 1

Get/build dependencies

	Open a the Git Bash command prompt

	Change directories to Downloads:

cd Downloads

	Clone the indy-sdk repository from github.

git clone https://github.com/hyperledger/indy-sdk.git

	Download the prebuilt dependencies here [https://repo.sovrin.org/windows/libindy/deps/]

	Extract them into the folder C:\BIN\x64

It really doesn’t matter where you put these as long as you remember where so you can set
the environment variables to this path

	If you are not building dependencies from source you may skip to Build

Binary deps

	https://www.npcglib.org/~stathis/downloads/openssl-1.0.2k-vs2017.7z

	https://download.libsodium.org/libsodium/releases/old/libsodium-1.0.14-msvc.zip

Source deps

	http://www.sqlite.org/2017/sqlite-amalgamation-3180000.zip

	https://github.com/zeromq/libzmq

Build sqlite

Download http://www.sqlite.org/2017/sqlite-amalgamation-3180000.zip

Create an empty static library project in Visual Studio and add sqlite.c file and 2 headers from extracted
archive. Then just build it.

Build libzmq

Follow to http://zeromq.org/intro.

	Download sources from last stable release for Windows.

	Open zeromq-x.x.x/builds/msvc/vs2015/libzmq.sln with Visual Studio

	If necessary change solution platforms on x64(if you are working on x64 arch).

	On main menu bar choose build->build libzmq.

	If build project was successful, two files libzmq.dll and libzmq.lib should appear
in path zeromq-x.x.x/bin/x64/Debug/vXXX/dynamic.

	rename libzmq.lib to zmq.lib.

Build

	Get binary dependencies (libamcl*, openssl, libsodium, libzmq, sqlite3).

	Put all *.{lib,dll} into one directory and headers into include/ subdirectory.

	Open a windows command prompt

	Configure MSVS environment to privide 64-bit builds by execution of vcvars64.bat:

"C:\Program Files (x86)\Microsoft Visual Studio\2017\Community\VC\Auxiliary\Build\"vcvars64.bat

Note that depending on the version of Visual Studio placement of vcvars64.bat can be different. For example, it can be
"C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\bin\amd64\vcvars64.bat"

	Execute "C:\Program Files (x86)\Microsoft Visual Studio\2017\Community\VC\Auxiliary\Build\vcvars64.bat"

	Point path to this directory using environment variables:

	set INDY_PREBUILT_DEPS_DIR=C:\BIN\x64

	set INDY_CRYPTO_PREBUILT_DEPS_DIR=C:\BIN\x64

	set MILAGRO_DIR=C:\BIN\x64

	set LIBZMQ_PREFIX=C:\BIN\x64

	set SODIUM_LIB_DIR=C:\BIN\x64

	set OPENSSL_DIR=C:\BIN\x64

	Set PATH to find .dlls:

	set PATH=C:\BIN\x64\lib;%PATH%

	change dir to indy-sdk/libindy and run cargo build (you may want to add --release --target x86_64-pc-windows-msvc
keys to cargo)

openssl-sys workaround

If your windows build fails complaining on gdi32.lib you should edit

 ~/.cargo/registry/src/github.com-*/openssl-sys-*/build.rs

and add

 println!("cargo:rustc-link-lib=dylib=gdi32");

to the end of main() function.

Then try to rebuild whole project.

Run integration tests

	Start local nodes pool on 127.0.0.1:9701-9708 with Docker:

docker build -f ci/indy-pool.dockerfile -t indy_pool .
docker run -itd -p 9701-9709:9701-9709 indy_pool

Please note that this port mapping between container and local host requires
latest Docker for Windows (linux containers) and windows system with Hyper-V support.

If you use some Docker distribution based on Virtual Box you can use Virtual Box’s
port forwarding future to map 9701-9709 container ports to local 9701-9709 ports.

	Run tests

RUST_TEST_THREADS=1 cargo test

 Setup Indy SDK build environment for RHEL-based distributions

Setup Indy SDK build environment for RHEL-based distributions

These instructions have been tested on:

	Amazon Linux 2017.03

	Fedora 27

	Centos

Please follow the instructions appropriate for your distribution.

Building libindy

1. Install Rust

Installation via rustup is recommended. Follow
these instructions [https://www.rust-lang.org/install.html].

2. Install dependencies available in system repositories

For Amazon Linux 2017.03/CentOS/RHEL:

yum clean all
yum upgrade -y
yum groupinstall -y "Development Tools"
yum install -y \
 wget \
 cmake \
 pkgconfig \
 openssl-devel \
 sqlite-devel

For Fedora 26/27/28:

dnf clean all
dnf upgrade -y
dnf groupinstall -y "Development Tools"
dnf install -y \
 wget \
 cmake \
 pkgconfig \
 openssl-devel \
 sqlite-devel

3. Build and install a modern version of libsodium from source

For Amazon Linux 2017.03 or other distributions without libsodium available in system repositories:

cd /tmp
curl https://download.libsodium.org/libsodium/releases/old/unsupported/libsodium-1.0.14.tar.gz | tar -xz
cd /tmp/libsodium-1.0.14
./configure
make
make install
rm -rf /tmp/libsodium-1.0.14

export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:/usr/local/lib/pkgconfig
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib

For Fedora 26/27/28, libsodium-1.0.14 is already available as a system package:

dnf install libsodium libsodium-devel

4. Additional dependencies

For Fedora 26/27/28, you may also need to install zeromq (libzmq) before being able to successfully
build libindy:

dnf install zeromq zeromq-devel

If you discover that there are other dependencies not mentioned here, please open an issue.

5. Checkout and build the library

git checkout https://github.com/hyperledger/indy-sdk.git
cd ./indy-sdk/libindy
cargo build

Building indy-cli

indy-cli is dependent on libindy and must be built before indy-cli.

After building libindy, run the following commands from the indy-sdk directory:

cd indy-cli
RUSTFLAGS="-L ../libindy/target/{BUILD_TYPE}" cargo build

In the above command, substitute {BUILD_TYPE} with release or debug as appropriate.

If you have installed libindy.so to a system-wide location and subsequently run ldconfig, you do not need
to specify the RUSTFLAGS environment variable as rustc should be able to find libindy.so without additional
help.

If not, however, indy-cli needs help to be able to find libindy.so while being built. Setting LD_LIBRARY_PATH
is only referenced at runtime and not at build time and is not helpful in this case. Specifying RUSTFLAGS in the
command above will tell rustc to also check ../libindy/target/{BUILD_TYPE} for libraries.

Running integration tests

Starting up

Start local nodes pool with Docker [https://github.com/hyperledger/indy-sdk/blob/master/README.md#how-to-start-local-nodes-pool-with-docker]

This may be useful if you want to launch integration tests inside another container attached to
the same docker network.

Run tests

RUST_TEST_THREADS=1 cargo test

It is possible to change ip of test pool by providing of TEST_POOL_IP environment variable:

RUST_TEST_THREADS=1 TEST_POOL_IP=10.0.0.2 cargo test

See ci/amazon.dockerfile [https://github.com/hyperledger/indy-sdk/blob/master/libindy/ci/amazon.dockerfile] for example of Amazon Linux based environment creation in Docker.

 Building binaries of LibIndy for Android

Building binaries of LibIndy for Android

Not ready for production use! Not fully tested.

Supported architectures are arm, armv7, arm64, x86 and x86_64

Prerequisites

	Docker

Dependencies

	The build scripts downloads the prebuilt dependencies while building. The prebuilt dependencies are available here [https://github.com/evernym/indy-android-dependencies/tree/master/prebuilt]

	If you want build the dependencies by yourself the instructions for that can be found here [https://github.com/evernym/indy-android-dependencies]

How to build.

	If on Ubuntu make sure you have these packages installed

apt-get install -y \
 pkg-config \
 libssl-dev \
 libgmp3-dev \
 curl \
 build-essential \
 libsqlite3-dev \
 cmake \
 apt-transport-https \
 ca-certificates \
 wget \
 devscripts \
 libncursesw5-dev \
 libzmq3-dev \
 zip \
 unzip \
 jq

	Run indy-sdk/libindy/build-libindy-android.sh to build libindy for arm, arm64 and x86

	This generates the libindy zip file with each architecture in the indy-sdk/libindy

	You can also set the LIBINDY_VERSION environment variable to append version number to generated zip file.

	To generate the build for a single architecture run android.build.sh

	e.g android.build.sh -d arm . The flag -d will download the dependencies automatically

	e.g android.build.sh arm <PATH_TO_OPENSSL> <PATH_TO_SODIUM> <PATH_TO_ZMQ>. If -d flag is not passed you have to give paths to dependencies

Usage

	Unzip the generated library.

	Copy generated indy-sdk/libindy/build_scripts/android/libindy_arm/libindy.so, indy-sdk/libindy/build_scripts/android/indy-android-dependencies/prebuild/sodium/libsodium_arm/lib/libsodium.so, and indy-sdk/libindy/build_scripts/android/indy-android-dependencies/prebuild/zmq/libzmq_arm/lib/libzmq.so to the jniLibs/armeabi-v7a folder of your android project

	Copy the corresponding files for jniLibs/arm64-v8a and jniLibs/x86 (similar to step above)

	libindy.so file is the dynamic library which is statically linked to its dependencies. This library can be loaded into apk without having dependencies along with it.

	libindy_shared.so file is the dynamic library which is dynamically linked to its dependencies. you need to pass the dependencies into apk.

	In order to use the library in Android, you need to set the EXTERNAL_STORAGE environment variable and load the library using JNA

Os.setenv("EXTERNAL_STORAGE", getExternalFilesDir(null).getAbsolutePath(), true);

System.loadLibrary("indy");

Notes:

The shared binary (libindy.so) of only x86_64 architecture is not statically linked with its dependencies.

Make sure the Android app which is going to use libindy has permissions to write to external storage.

Add following line to AndroidManifest.xml

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

Android emulator generally use x86 images

If you receive a JNA error, you may need to add additonal files into your jniLibs folder.

	Add the correct version of libjnidispatch.so to the corresponding subfolder in jniLibs -> https://github.com/java-native-access/jna/tree/master/lib/native

	For example, android-aarch64.jar goes into the jniLibs/arm64-v8a subfolder

	NOTE: You need to download the correct version of libjnidispatch.so (tag 4.5.1 in the jna repo is the version accepted by Indy SDK v1.5)

##Known Issues

	The Android build does not successfully compile on OSX

	It fails on the libzmq linking

Building binaries of Libnullpay for Android

Not ready for production use! Not fully tested.

Prerequisites

	Docker

Dependencies

	Libindy for Android

How to build.

	Unzip libindy_android_<ARCH>_<VERSION>

	Copy the extracted folder to indy-sdk/libnullpay/

	Run indy-sdk/libnullpay/build-libnullpay-android.sh to build libnullpay for arm, arm64 and x86

	To build for individual architecture, run indy-sdk/libnullpay/android.build.sh -d arm <PATH_TO_LIBINDY> to build libnullpay for arm

	Or set env variable INDY_DIR=<PATH_TO_LIBINDY> and run android.build.sh -d arm to generate for arm

	Set env variable INDY_DIR=<PATH_TO_LIBINDY> and run android.build.sh -d arm64 to generate for arm64

	Set env variable INDY_DIR=<PATH_TO_LIBINDY> and run android.build.sh -d x86 to generate for x86

 Libindy Migration Guides

Libindy Migration Guides

These documents provide necessary information for Libindy migration. This document is written for developers using Libindy 1.3.0 to provide necessary information and
to simplify their transition to the next release of our API.

	Libindy migration Guide from v.1.3.0 to 1.4.0

	Libindy 1.4 to 1.5 migration Guide

	Libindy 1.5 to 1.6 migration Guide

	Libindy 1.6 to 1.7 migration Guide

	Libindy 1.7 to 1.8 migration Guide

 Libindy migration Guide from v.1.3.0 to 1.4.0

Libindy migration Guide from v.1.3.0 to 1.4.0

A Developer Guide for Libindy migration

There are a lot APIs that have been changed in Libindy 1.4.0.
This document is written for developers using Libindy 1.3.0 to provide necessary information and
to simplify their transition to API of Libindy 1.4.0.

	Notes

	Api

	Anoncreds API

	Ledger API

	Signus API

	Crypto API

	Blob Storage API

	Agent API

	Pairwise API

	Pool API

	Wallet API

	Explore the Code

Notes

In the following tables, there are mappings for each Libindy API part of how 1.3.0 functionality maps to 1.4.0.

Functions from version 1.3.0 are listed in the left column, and the equivalent 1.4.0 function is placed in the right column.

	If some function had been added, the word ‘NEW’ would be placed in the left column.

	If some function had been deleted, the word ‘DELETED’ would be placed in the right column.

	If some function had been changed, the current format would be placed in the right column.

	If some function had not been changed, the symbol ‘=’ would be placed in the right column.

	To get more details about current format of a function click on the description above it.

	Bellow are signatures of functions in Libindy C API.
The params of cb (except command_handle and err) will be result values of the similar function in any Libindy wrapper.

Anoncreds API mapping

Anoncreds API is the most affected part of Libindy.
The complete design of Anoncreds can be found here [https://github.com/hyperledger/indy-sdk/tree/master/docs/design/anoncreds].

Here are three main types of changes that have been done:

	Improved support of Revocation.

	Changed signature of some functions to avoid persisting in wallet intermediate steps entities.

	Changed format of some input and output objects such as filter, proof request, credential info and etc to use different identifiers for public entities:

	Schema - id in the format did | marker | name | version instead of triple name, version, did .

	Credential Definition - id in the format did | marker | signatureType | schemaID instead of pair did, schema_key.

	Revocation Registry - id in the format did | marker | credDefID | revocDefType | revocDefTag instead of seqNo.

 	v1.3.0 - Anoncreds API
 	v1.4.0 - Anoncreds API

 	

 Issuer create Credential Schema

 	
 NEW

 	

indy_issuer_create_schema(
 command_handle: i32,
 issuer_did: *const c_char,
 name: *const c_char,
 version: *const c_char,
 attrs: *const c_char,
 cb: fn(xcommand_handle: i32,
 err: ErrorCode,
 schema_id: *const c_char,
 schema_json: *const c_char))

 	

 Issuer create Credential Definition for the given Schema

 	

indy_issuer_create_and_store_claim_def(
 command_handle: i32,
 wallet_handle: i32,
 issuer_did: *const c_char,
 schema_json: *const c_char,
 signature_type: *const c_char,
 create_non_revoc: bool,
 cb: fn(xcommand_handle: i32,
 err: ErrorCode,
 claim_def_json: *const c_char))

 	

indy_issuer_create_and_store_credential_def(
 command_handle: i32,
 wallet_handle: i32,
 issuer_did: *const c_char,
 schema_json: *const c_char,
 tag: *const c_char,
 signature_type: *const c_char,
 config_json: *const c_char,
 cb: fn(xcommand_handle: i32,
 err: ErrorCode,
 cred_def_id: *const c_char,
 cred_def_json: *const c_char))

 It is IMPORTANT for current Pool version get Schema from Ledger
 with correct seqNo to save backward compatibility before the creation of Credential Definition.

 	

 Issuer create a new revocation registry for the given Credential Definition

 	

indy_issuer_create_and_store_revoc_reg(
 command_handle: i32,
 wallet_handle: i32,
 issuer_did: *const c_char,
 schema_seq_no: i32,
 max_claim_num: i32,
 cb: fn(xcommand_handle: i32,
 err: ErrorCode,
 revoc_reg_json: *const c_char))

 	

indy_issuer_create_and_store_revoc_reg(
 command_handle: i32,
 wallet_handle: i32,
 issuer_did: *const c_char,
 revoc_def_type: *const c_char,
 tag: *const c_char,
 cred_def_id: *const c_char,
 config_json: *const c_char,
 tails_writer_handle: i32,
 cb: fn(xcommand_handle: i32,
 err: ErrorCode,
 revoc_reg_id: *const c_char,
 revoc_reg_def_json: *const c_char,
 revoc_reg_entry_json: *const c_char))

 	

 Issuer create credential offer

 	
 NEW

 	

indy_issuer_create_credential_offer(
 command_handle: i32,
 wallet_handle: i32,
 cred_def_id: *const c_char,
 cb: fn(xcommand_handle: i32,
 err: ErrorCode,
 cred_offer_json: *const c_char))

 Note: The format of Credential Offer has been changed

 	

 Issuer issue Credential for the given Credential Request

 	

indy_issuer_create_claim(
 command_handle: i32,
 wallet_handle: i32,
 claim_req_json: *const c_char,
 claim_json: *const c_char,
 user_revoc_index: i32,
 cb: fn(xcommand_handle: i32,
 err: ErrorCode,
 revoc_reg_update_json: *const c_char,
 xclaim_json: *const c_char))

 	

indy_issuer_create_credential(
 command_handle: i32,
 wallet_handle: i32,
 cred_offer_json: *const c_char,
 cred_req_json: *const c_char,
 cred_values_json: *const c_char,
 rev_reg_id: *const c_char,
 blob_storage_reader_handle: i32,
 cb: fn(xcommand_handle: i32,
 err: ErrorCode,
 cred_json: *const c_char,
 cred_revoc_id: *const c_char,
 revoc_reg_delta_json: *const c_char))

 Note: The format of Credential has been changed

 	

 Issuer revoke a credential

 	

indy_issuer_revoke_claim(
 command_handle: i32,
 wallet_handle: i32,
 issuer_did: *const c_char,
 schema_seq_no: i32,
 user_revoc_index: i32,
 cb: fn(xcommand_handle: i32,
 err: ErrorCode,
 revoc_reg_update_json: *const c_char))

 	

indy_issuer_revoke_credential(
 command_handle: i32,
 wallet_handle: i32,
 blob_storage_reader_cfg_handle: i32,
 rev_reg_id: *const c_char,
 cred_revoc_id: *const c_char,
 cb: fn(xcommand_handle: i32,
 err: ErrorCode,
 revoc_reg_delta_json: *const c_char))

 	

 Issuer merge two revocation registry deltas

 	
 NEW

 	

indy_issuer_merge_revocation_registry_deltas(
 command_handle: i32,
 rev_reg_delta_json: *const c_char,
 other_rev_reg_delta_json: *const c_char,
 cb: fn(xcommand_handle: i32,
 err: ErrorCode,
 merged_rev_reg_delta: *const c_char))

 	
Prover stores a Claim Offer from the given issuer in a secure storage.

 	

indy_prover_store_claim_offer(
 command_handle: i32,
 wallet_handle: i32,
 claim_offer_json: *const c_char,
 cb: fn(xcommand_handle: i32,
 err: ErrorCode))

 	
 DELETED

 	
Prover gets all stored Claim Offers

 	

indy_prover_get_claim_offers(
 command_handle: i32,
 wallet_handle: i32,
 filter_json: *const c_char,
 cb: fn(xcommand_handle: i32,
 err: ErrorCode,
 claim_offers_json: *const c_char))

 	
 DELETED

 	

 Prover creates a Master Secret

 	

indy_prover_create_master_secret(
 command_handle: i32,
 wallet_handle: i32,
 master_secret_name: *const c_char,
 cb: fn(xcommand_handle: i32,
 err: ErrorCode))

 	

indy_prover_create_master_secret(
 command_handle: i32,
 wallet_handle: i32,
 master_secret_id: *const c_char,
 cb: fn(xcommand_handle: i32,
 err: ErrorCode,
 out_master_secret_id: *const c_char))

 	

 Prover creates a Credential Request for the given Credential Offer

 	

indy_prover_create_and_store_claim_req(
 command_handle: i32,
 wallet_handle: i32,
 prover_did: *const c_char,
 claim_offer_json: *const c_char,
 claim_def_json: *const c_char,
 master_secret_name: *const c_char,
 cb: fn(xcommand_handle: i32,
 err: ErrorCode,
 claim_req_json: *const c_char))

 	

indy_prover_create_credential_req(
 command_handle: i32,
 wallet_handle: i32,
 prover_did: *const c_char,
 cred_offer_json: *const c_char,
 cred_def_json: *const c_char,
 master_secret_id: *const c_char,
 cb: fn(xcommand_handle: i32,
 err: ErrorCode,
 cred_req_json: *const c_char,
 cred_req_metadata_json: *const c_char))

 Note: The format of Credential Request has been changed

 	

 Prover stores Credential in a secure wallet

 	

indy_prover_store_claim(
 command_handle: i32,
 wallet_handle: i32,
 claims_json: *const c_char,
 cb: fn(xcommand_handle: i32,
 err: ErrorCode))

 	

indy_prover_store_credential(
 command_handle: i32,
 wallet_handle: i32,
 cred_id: *const c_char,
 cred_req_metadata_json: *const c_char,
 cred_json: *const c_char,
 cred_def_json: *const c_char,
 rev_reg_def_json: *const c_char,
 cb: fn(xcommand_handle: i32,
 err: ErrorCode,
 out_cred_id: *const c_char))

 	

 Prover gets human readable claims according to the filter

 	

indy_prover_get_claims(
 command_handle: i32,
 wallet_handle: i32,
 filter_json: *const c_char,
 cb: fn(xcommand_handle: i32,
 err: ErrorCode,
 claims_json: *const c_char))

 	

indy_prover_get_credentials(
 command_handle: i32,
 wallet_handle: i32,
 filter_json: *const c_char,
 cb: fn(xcommand_handle: i32,
 err: ErrorCode,
 matched_credentials: *const c_char))

 Note: The formats of Filter and Matched Credential have been changed

 	

 Prover gets human readable credentials matching the given proof request

 	

indy_prover_get_claims_for_proof_req(
 command_handle: i32,
 wallet_handle: i32,
 proof_request_json: *const c_char,
 cb: fn(xcommand_handle: i32,
 err: ErrorCode,
 claims_json: *const c_char))

 	

indy_prover_get_credentials_for_proof_req(
 command_handle: i32,
 wallet_handle: i32,
 proof_request_json: *const c_char,
 cb: fn(xcommand_handle: i32,
 err: ErrorCode,
 credentials_json: *const c_char))

 Note: The formats of Proof Request and Matched Credential have been changed

 	

 Prover creates a proof according to the given proof request

 	

fn indy_prover_create_proof(
 command_handle: i32,
 wallet_handle: i32,
 proof_req_json: *const c_char,
 requested_claims_json: *const c_char,
 schemas_json: *const c_char,
 master_secret_name: *const c_char,
 claim_defs_json: *const c_char,
 revoc_regs_json: *const c_char,
 cb: fn(xcommand_handle: i32,
 err: ErrorCode,
 proof_json: *const c_char))

 	

indy_prover_create_proof(
 command_handle: i32,
 wallet_handle: i32,
 proof_req_json: *const c_char,
 requested_credentials_json: *const c_char,
 master_secret_id: *const c_char,
 schemas_json: *const c_char,
 credential_defs_json: *const c_char,
 rev_states_json: *const c_char,
 cb: fn(xcommand_handle: i32,
 err: ErrorCode,
 proof_json: *const c_char))

 Note: The formats of Proof Request, Requested Credentials and Proof have been changed

 	

 Verifier verifies a proof

 	

indy_verifier_verify_proof(
 command_handle: i32,
 proof_request_json: *const c_char,
 proof_json: *const c_char,
 schemas_json: *const c_char,
 claim_defs_jsons: *const c_char,
 revoc_regs_json: *const c_char,
 cb: fn(xcommand_handle: i32,
 err: ErrorCode,
 valid: bool))

 	

indy_verifier_verify_proof(
 command_handle: i32,
 proof_request_json: *const c_char,
 proof_json: *const c_char,
 schemas_json: *const c_char,
 credential_defs_json: *const c_char,
 rev_reg_defs_json: *const c_char,
 rev_regs_json: *const c_char,
 cb: fn(xcommand_handle: i32,
 err: ErrorCode,
 valid: bool))

 Note: The formats of Proof Request and Proof have been changed

 	

 Create revocation state for a credential in the particular time moment

 	
 NEW

 	

indy_create_revocation_state(
 command_handle: i32,
 blob_storage_reader_handle: i32,
 rev_reg_def_json: *const c_char,
 rev_reg_delta_json: *const c_char,
 timestamp: u64,
 cred_rev_id: *const c_char,
 cb: fn(xcommand_handle: i32,
 err: ErrorCode,
 rev_state_json: *const c_char))

 	

 Create new revocation state for a credential based on existed

 	
 NEW

 	

indy_update_revocation_state(
 command_handle: i32,
 blob_storage_reader_handle: i32,
 rev_state_json: *const c_char,
 rev_reg_def_json: *const c_char,
 rev_reg_delta_json: *const c_char,
 timestamp: u64,
 cred_rev_id: *const c_char,
 cb: fn(xcommand_handle: i32,
 err: ErrorCode,
 updated_rev_state_json: *const c_char))

Blob Storage API mapping

CL revocation schema introduces Revocation Tails entity used to hide information about revoked credential.
Tails are static information that may require huge amount of data and stored outside of Libindy wallet.
A way how to access tails blobs can be very application specific.
To access this Libindy 1.4.0 provides new Blob Storage API.

 	v1.4.0 - Blob Storage API

 	

 Open Blob Storage reader

 	

indy_open_blob_storage_reader(
 command_handle: i32,
 type_: *const c_char,
 config_json: *const c_char,
 cb: fn(command_handle_: i32,
 err: ErrorCode,
 handle: i32))

 	

 Open Blob Storage writer

 	

indy_open_blob_storage_writer(command_handle: i32,
 type_: *const c_char,
 config_json: *const c_char,
 cb: fn(command_handle_: i32,
 err: ErrorCode,
 handle: i32))

Ledger API mapping

There are four types of changes in Ledger API:

	Added new transaction builders for Revocation support

	Added new transaction builders for Pool support

	Added parsers of transaction responses related to entities participating in Anoncreds

	Changed params of some transaction builders

 	v1.3.0 - Ledger API
 	v1.4.0 - Ledger API

 	

 Builds a SCHEMA request

 	

indy_build_schema_request(
 command_handle: i32,
 submitter_did: *const c_char,
 data: *const c_char,
 cb: fn(xcommand_handle: i32,
 err: ErrorCode,
 request_json: *const c_char))

 	
Left the same but the format of data has been changed to:

{
 id: identifier of schema
 attrNames: array of attribute name strings
 name: Schema's name string
 version: Schema's version string,
 ver: version of the Schema json
}

 	

 Builds a GET_SCHEMA request

 	

indy_build_get_schema_request(
 command_handle: i32,
 submitter_did: *const c_char,
 dest: *const c_char,
 data: *const c_char,
 cb: fn(xcommand_handle: i32,
 err: ErrorCode,
 request_json: *const c_char))

 	

indy_build_get_schema_request(
 command_handle: i32,
 submitter_did: *const c_char,
 id: *const c_char,
 cb: fn(xcommand_handle: i32,
 err: ErrorCode,
 request_json: *const c_char))

 	

 Parse a GET_SCHEMA response

 	
 NEW

 	

indy_parse_get_schema_response(
 command_handle: i32,
 get_schema_response: *const c_char,
 cb: fn(xcommand_handle: i32,
 err: ErrorCode,
 schema_id: *const c_char,
 schema_json: *const c_char))

 	

 Builds an CRED_DEF request

 	

indy_build_claim_def_txn(
 command_handle: i32,
 submitter_did: *const c_char,
 xref: i32,
 signature_type: *const c_char,
 data: *const c_char,
 cb: fn(xcommand_handle: i32,
 err: ErrorCode,
 request_result_json: *const c_char))

 	

indy_build_cred_def_request(
 command_handle: i32,
 submitter_did: *const c_char,
 data: *const c_char,
 cb: fn(xcommand_handle: i32,
 err: ErrorCode,
 request_result_json: *const c_char))

 	

 Builds a GET_CRED_DEF request

 	

indy_build_get_claim_def_txn(
 command_handle: i32,
 submitter_did: *const c_char,
 xref: i32,
 signature_type: *const c_char,
 origin: *const c_char,
 cb: fn(xcommand_handle: i32,
 err: ErrorCode,
 request_json: *const c_char))

 	

indy_build_get_cred_def_request(
 command_handle: i32,
 submitter_did: *const c_char,
 id: *const c_char,
 cb: fn(xcommand_handle: i32,
 err: ErrorCode,
 request_json: *const c_char))

 	

 Parse a GET_CRED_DEF response

 	
 NEW

 	

indy_parse_get_cred_def_response(
 command_handle: i32,
 get_cred_def_response: *const c_char,
 cb: fn(xcommand_handle: i32,
 err: ErrorCode,
 cred_def_id: *const c_char,
 cred_def_json: *const c_char))

 	

 Builds a POOL_CONFIG request

 	
 NEW

 	

indy_build_pool_config_request(
 command_handle: i32,
 submitter_did: *const c_char,
 writes: bool,
 force: bool,
 cb: fn(xcommand_handle: i32,
 err: ErrorCode,
 request_json: *const c_char))

 	

 Builds a POOL_UPGRADE request

 	
 NEW

 	

indy_build_pool_upgrade_request(
 command_handle: i32,
 submitter_did: *const c_char,
 name: *const c_char,
 version: *const c_char,
 action: *const c_char,
 sha256: *const c_char,
 timeout: i32,
 schedule: *const c_char,
 justification: *const c_char,
 reinstall: bool,
 force: bool,
 cb: fn(xcommand_handle: i32,
 err: ErrorCode,
 request_json: *const c_char))

 	

 Builds a REVOC_REG_DEF request

 	
 NEW

 	

indy_build_revoc_reg_def_request(
 command_handle: i32,
 submitter_did: *const c_char,
 data: *const c_char,
 cb: fn(xcommand_handle: i32,
 err: ErrorCode,
 rev_reg_def_req: *const c_char))

 	

 Builds a GET_REVOC_REG_DEF request

 	
 NEW

 	

indy_build_get_revoc_reg_def_request(
 command_handle: i32,
 submitter_did: *const c_char,
 id: *const c_char,
 cb: fn(xcommand_handle: i32,
 err: ErrorCode,
 request_json: *const c_char))

 	

 Parse a GET_REVOC_REG_DEF response

 	
 NEW

 	

indy_parse_get_revoc_reg_def_response(
 command_handle: i32,
 get_revoc_reg_def_response: *const c_char,
 cb: fn(xcommand_handle: i32,
 err: ErrorCode,
 revoc_reg_def_id: *const c_char,
 revoc_reg_def_json: *const c_char))

 	

 Builds a REVOC_REG_ENTRY request

 	
 NEW

 	

indy_build_revoc_reg_entry_request(
 command_handle: i32,
 submitter_did: *const c_char,
 revoc_reg_def_id: *const c_char,
 rev_def_type: *const c_char,
 value: *const c_char,
 cb: fn(xcommand_handle: i32,
 err: ErrorCode,
 request_json: *const c_char))

 	

 Builds a GET_REVOC_REG request

 	
 NEW

 	

indy_build_get_revoc_reg_request(
 command_handle: i32,
 submitter_did: *const c_char,
 revoc_reg_def_id: *const c_char,
 timestamp: i64,
 cb: fn(xcommand_handle: i32,
 err: ErrorCode,
 request_json: *const c_char))

 	

 Parse a GET_REVOC_REG response

 	
 NEW

 	

indy_parse_get_revoc_reg_response(
 command_handle: i32,
 get_revoc_reg_response: *const c_char,
 cb: fn(xcommand_handle: i32,
 err: ErrorCode,
 revoc_reg_def_id: *const c_char,
 revoc_reg_json: *const c_char,
 timestamp: u64))

 	

 Builds a GET_REVOC_REG_DELTA request

 	
 NEW

 	

indy_build_get_revoc_reg_delta_request(
 command_handle: i32,
 submitter_did: *const c_char,
 revoc_reg_def_id: *const c_char,
 from: i64,
 to: i64,
 cb: fn(xcommand_handle: i32,
 err: ErrorCode,
 request_json: *const c_char))

 	

 Parse a GET_REVOC_REG_DELTA response

 	
 NEW

 	

indy_parse_get_revoc_reg_delta_response(
 command_handle: i32,
 get_revoc_reg_delta_response: *const c_char,
 cb: fn(xcommand_handle: i32,
 err: ErrorCode,
 revoc_reg_def_id: *const c_char,
 revoc_reg_delta_json: *const c_char,
 timestamp: u64))

 	

 Signs and submits request message to validator pool

 	

indy_sign_and_submit_request(...)

 	
 =

 	

 Send request message to validator pool

 	

indy_submit_request(...)

 	
 =

 	

 Signs request message

 	

indy_sign_request(...)

 	
 =

 	

 Builds a NYM request

 	

indy_build_nym_request(...)

 	
 =

 	

 Builds a GET_NYM request

 	

indy_build_get_nym_request(...)

 	
 =

 	

 Builds an ATTRIB request

 	

indy_build_attrib_request(...)

 	
 =

 	

 Builds a GET_ATTRIB request

 	

indy_build_get_attrib_request(...)

 	
 =

 	

 Builds a NODE request

 	

indy_build_node_request(...)

 	
 =

 	

 Builds a GET_TXN request

 	

indy_build_get_txn_request(...)

 	
 =

 Libindy 1.4 to 1.5 migration Guide

Libindy 1.4 to 1.5 migration Guide

This document is written for developers using Libindy to provide necessary information and
to simplify their transition to Libindy 1.5 from Libindy 1.4. If you are using older Libindy
version you can check migration guides history:

	Libindy 1.3 to 1.4 migration [https://github.com/hyperledger/indy-sdk/blob/v1.4.0/doc/migration-guide.md]

Table of contents

	Notes

	Wallet API

	Non-Secrets API

	Payments API

	Pool API

	Ledger API

Notes

Migration information is organized in tables, there are mappings for each Libindy API part of how older version functionality maps to a newer one.
Functions from older version are listed in the left column, and the equivalent newer version function is placed in the right column:

	If some function had been added, the word ‘NEW’ would be placed in the left column.

	If some function had been deleted, the word ‘DELETED’ would be placed in the right column.

	If some function had been deprecated, the word ‘DEPRECATED’ would be placed in the right column.

	If some function had been changed, the current format would be placed in the right column.

	If some function had not been changed, the symbol ‘=’ would be placed in the right column.

	To get more details about current format of a function click on the description above it.

	Bellow are signatures of functions in Libindy C API.
The params of cb (except command_handle and err) will be result values of the similar function in any Libindy wrapper.

Wallet API

	In v1.4 libindy allowed to plug different wallet implementations. Plugged wallet in v1.4 handled both security
and storage layers. Libindy v1.5 restricts plugged interface by handling only storage layer.
All encryption is performed in libindy. It simplifies plugged wallets and provides warranty of a good security level
for 3d party wallets implementations.

	Libindy v1.5 changes wallet format to allow efficient and flexible search for entities with pagination support.
WARNING wallet format of libindy v1.5 isn’t compatible with a wallet format of libindy v1.4.

	There have been added functions that allow performing Export/Import of Wallet. Note these endpoints are EXPERIMENTAL.
Function signature and behavior may change in the future releases.

	indy_list_wallets endpoint is DEPRECATED and will be removed in the next release. The main idea is avoid
maintaining created wallet list on libindy side. It will allow to access wallets from a cluster and solve
some problems on mobile platforms. indy_create_wallet and indy_open_wallet endpoints will
also get related changes in the next release.

References:

	Wallet Storage Design [https://github.com/hyperledger/indy-sdk/tree/master/docs/design/003-wallet-storage]

	Wallet Export/Import Design [https://github.com/hyperledger/indy-sdk/tree/master/docs/design/009-wallet-export-import]

 	v1.4.0 - Wallet API
 	v1.5.0 - Wallet API

 	

 Register custom wallet storage implementation

 	

indy_register_wallet_type(
 command_handle: i32,
 xtype: *const c_char,
 create: WalletCreate,
 open: WalletOpen,
 set: WalletSet,
 get: WalletGet,
 get_not_expired: WalletGetNotExpired,
 list: WalletList,
 close: WalletClose,
 delete: WalletDelete,
 free: WalletFree,
 cb: fn(xcommand_handle: i32,
 err: ErrorCode))

 	

indy_register_wallet_storage(
 command_handle: i32,
 type_: *const c_char,
 create: WalletCreate,
 open: WalletOpen,
 close: WalletClose,
 delete: WalletDelete,
 add_record: WalletAddRecord,
 update_record_value: WalletUpdateRecordValue,
 update_record_tags: WalletUpdateRecordTags,
 add_record_tags: WalletAddRecordTags,
 delete_record_tags: WalletDeleteRecordTags,
 delete_record: WalletDeleteRecord,
 get_record: WalletGetRecord,
 get_record_id: WalletGetRecordId,
 get_record_type: WalletGetRecordType,
 get_record_value: WalletGetRecordValue,
 get_record_tags: WalletGetRecordTags,
 free_record: WalletFreeRecord,
 get_storage_metadata: WalletGetStorageMetadata,
 set_storage_metadata: WalletSetStorageMetadata,
 free_storage_metadata: WalletFreeStorageMetadata,
 search_records: WalletSearchRecords,
 search_all_records: WalletSearchAllRecords,
 get_search_total_count: WalletGetSearchTotalCount,
 fetch_search_next_record: WalletFetchSearchNextRecord,
 free_search: WalletFreeSearch,
 cb: fn(xcommand_handle: i32,
 err: ErrorCode))

 	

 Create a new secure wallet

 	

indy_create_wallet(command_handle: i32,
 pool_name: *const c_char,
 name: *const c_char,
 xtype: *const c_char,
 config: *const c_char,
 credentials: *const c_char,
 cb: Option

 Libindy 1.5 to 1.6 migration Guide

Libindy 1.5 to 1.6 migration Guide

This document is written for developers using Libindy to provide necessary information and
to simplify their transition to Libindy 1.6 from Libindy 1.5. If you are using older Libindy
version you can check migration guides history:

	Libindy 1.3 to 1.4 migration [https://github.com/hyperledger/indy-sdk/blob/v1.4.0/doc/migration-guide.md]

	Libindy 1.4 to 1.5 migration [https://github.com/hyperledger/indy-sdk/blob/v1.5.0/doc/migration-guide-1.4.0-1.5.0.md]

Table of contents

	Notes

	Libindy 1.5 to 1.6.0 migration

	Wallet API

	Anoncreds API

	Payments API

	Pool API

	Libindy 1.6.0 to 1.6.1 migration

	Libindy 1.6.1 to 1.6.2 migration

	Wallet API 1.6.2

	Ledger API 1.6.2

	Libindy 1.6.2 to 1.6.3 migration

	Wallet API 1.6.3

	Ledger API 1.6.3

	Libindy 1.6.3 to 1.6.4 migration

	Libindy 1.6.4 to 1.6.5 migration

	Libindy 1.6.5 to 1.6.6 migration

	Libindy 1.6.6 to 1.6.7 migration

Notes

Migration information is organized in tables, there are mappings for each Libindy API part of how older version functionality maps to a newer one.
Functions from older version are listed in the left column, and the equivalent newer version function is placed in the right column:

	If some function had been added, the word ‘NEW’ would be placed in the left column.

	If some function had been deleted, the word ‘DELETED’ would be placed in the right column.

	If some function had been deprecated, the word ‘DEPRECATED’ would be placed in the right column.

	If some function had been changed, the current format would be placed in the right column.

	If some function had not been changed, the symbol ‘=’ would be placed in the right column.

	To get more details about current format of a function click on the description above it.

	Bellow are signatures of functions in Libindy C API.
The params of cb (except command_handle and err) will be result values of the similar function in any Libindy wrapper.

Libindy 1.5 to 1.6.0 migration Guide

Wallet API

The main idea of changes performed in Wallet API is to avoid maintaining created wallet list on Libindy side.
It allows to access wallets from a cluster and solves some problems on mobile platforms.

The following changes have been performed:

	Changed Wallet export serialization:

	Use MsgPack instead of custom entities serialization to be more reliable and allow extend-ability in backward compatible way.

	Changed header format to be more reliable and allow extend-ability in backward compatible way.

	Use STOP message to make sure that there was no truncation of export file.

	Removed EXPERIMENTAL notice for import/export API endpoints.

	Removed association between Wallet and Pool.

	Removed persistence of Wallet configuration by Libindy.

	A significant part of Wallet APIs has been updated to accept wallet configuration as a single json
which provides whole wallet configuration.
This wallet configuration json has the following format:

 {
 "id": string, Identifier of the wallet.
 Configured storage uses this identifier to lookup exact wallet data placement.
 "storage_type": optional<string>, Type of the wallet storage. Defaults to 'default'.
 'Default' storage type allows to store wallet data in the local file.
 Custom storage types can be registered with indy_register_wallet_storage call.
 "storage_config": optional<object>, Storage configuration json. Storage type defines set of supported keys.
 Can be optional if storage supports default configuration.
 For 'default' storage type configuration is:
 {
 "path": optional<string>, Path to the directory with wallet files.
 Defaults to $HOME/.indy_client/wallets.
 Wallet will be stored in the file {path}/{id}/sqlite.db
 }
 }

WARNING Wallet format of libindy v1.6 isn’t compatible with a wallet format of libindy v1.5.

 	v1.5.0 - Wallet API
 	v1.6.0 - Wallet API

 	

 Create a new secure wallet

 	

indy_create_wallet(command_handle: i32,
 pool_name: *const c_char,
 name: *const c_char,
 xtype: *const c_char,
 config: *const c_char,
 credentials: *const c_char,
 cb: Option

 Libindy 1.6 to 1.7 migration Guide

Libindy 1.6 to 1.7 migration Guide

This document is written for developers using Libindy to provide necessary information and
to simplify their transition to Libindy 1.7 from Libindy 1.6. If you are using older Libindy
version you can check migration guides history:

	Libindy 1.3 to 1.4 migration [https://github.com/hyperledger/indy-sdk/blob/v1.4.0/doc/migration-guide.md]

	Libindy 1.4 to 1.5 migration [https://github.com/hyperledger/indy-sdk/blob/v1.5.0/doc/migration-guide-1.4.0-1.5.0.md]

	Libindy 1.5 to 1.6 migration [https://github.com/hyperledger/indy-sdk/blob/v1.6.0/doc/migration-guide-1.5.0-1.6.0.md]

Table of contents

	Notes

	Libindy 1.6 to 1.7.0 migration

	Logger API

	Libindy API

Notes

Migration information is organized in tables, there are mappings for each Libindy API part of how older version functionality maps to a newer one.
Functions from older version are listed in the left column, and the equivalent newer version function is placed in the right column:

	If some function had been added, the word ‘NEW’ would be placed in the left column.

	If some function had been deleted, the word ‘DELETED’ would be placed in the right column.

	If some function had been deprecated, the word ‘DEPRECATED’ would be placed in the right column.

	If some function had been changed, the current format would be placed in the right column.

	If some function had not been changed, the symbol ‘=’ would be placed in the right column.

	To get more details about current format of a function click on the description above it.

	Bellow are signatures of functions in Libindy C API.
The params of cb (except command_handle and err) will be result values of the similar function in any Libindy wrapper.

Libindy 1.6 to 1.7.0 migration Guide

Logger API

The main purpose of this API is to forward logs of libindy and wrappers to its consumers. It is needed if you consume libindy as a .so or .dll - so you can forward logs from libindy to your logging framework.
You don’t need this endpoints if you use libindy through the wrapper – in Java, Rust and Python wrappers they are already forwarded to slf4j for Java, log crate for Rust and default logging facade for python.

 	v1.6.0 - Logger API
 	v1.7.0 - Logger API

 	

 Set custom logger implementation

 	
 NEW

 	

 indy_set_logger(context: *const c_void,
 enabled: Option

 Libindy 1.7 to 1.8 migration Guide

Libindy 1.7 to 1.8 migration Guide

This document is written for developers using Libindy to provide necessary information and
to simplify their transition to Libindy 1.8 from Libindy 1.7. If you are using older Libindy
version you can check migration guides history:

	Libindy 1.3 to 1.4 migration [https://github.com/hyperledger/indy-sdk/blob/v1.4.0/doc/migration-guide.md]

	Libindy 1.4 to 1.5 migration [https://github.com/hyperledger/indy-sdk/blob/v1.5.0/doc/migration-guide-1.4.0-1.5.0.md]

	Libindy 1.5 to 1.6 migration [https://github.com/hyperledger/indy-sdk/blob/v1.6.0/doc/migration-guide-1.5.0-1.6.0.md]

	Libindy 1.6 to 1.7 migration [https://github.com/hyperledger/indy-sdk/blob/v1.7.0/doc/migration-guide-1.6.0-1.7.0.md]

Table of contents

	Notes

	Libindy 1.7 to 1.8.0 migration

	Libindy API

	Crypto API

	Ledger API

Notes

Migration information is organized in tables, there are mappings for each Libindy API part of how older version functionality maps to a newer one.
Functions from older version are listed in the left column, and the equivalent newer version function is placed in the right column:

	If some function had been added, the word ‘NEW’ would be placed in the left column.

	If some function had been deleted, the word ‘DELETED’ would be placed in the right column.

	If some function had been deprecated, the word ‘DEPRECATED’ would be placed in the right column.

	If some function had been changed, the current format would be placed in the right column.

	If some function had not been changed, the symbol ‘=’ would be placed in the right column.

	To get more details about current format of a function click on the description above it.

	Bellow are signatures of functions in Libindy C API.
The params of cb (except command_handle and err) will be result values of the similar function in any Libindy wrapper.

Libindy 1.7 to 1.8.0 migration Guide

Libindy API

The main purpose of this changes is providing a way of getting additional error information like message and backtrace.

Changes

	Migrated Libindy to failure crate for better handling and error chaining.

	Added synchronous indy_get_current_error API function that returns details for last occurred error.

	Updated Libindy wrappers for automatic getting error details:

	Python - added message and indy_backtrace fields to IndyError object.

	Java - added sdkBacktrace field to IndyException. Libindy error message set as the main for IndyException.

	NodeJS - added indyMessage and indyBacktrace fields to IndyError object.

	Rust - changed type of returning value from enum ErrorCode on structure IndyError with error_code, message, indy_backtrace fields.

	Objective-C - added message and indy_backtrace fields to userInfo dictionary in NSError object.

	Updated Indy-Cli to show Libindy error message in some cases.

 	v1.7.0 - Libindy API
 	v1.8.0 - Libindy API

 	

 Get details for last occurred error.

 	
 NEW

 	
indy_get_current_error(
 error_json_p: *mut *const c_char)

 	

 Set libindy runtime configuration

 	
indy_set_runtime_config(
 config: *const c_char) -> ErrorCode

 	
 Note: Format of config parameter was changed. Current format is:

{
 "crypto_thread_pool_size": Optional[int] -
 size of thread pool
 "collect_backtrace": Optional

 SDK Architecture

SDK Architecture

Right now we have some rendered svg diagrams on github at https://github.com/hyperledger/indy-sdk/tree/master/docs/architecture/

To be continued…

 什麼是 Indy 和 Libindy，還有為什麼它們那麼重要？

什麼是 Indy 和 Libindy，還有為什麼它們那麼重要？

Indy 提供一個私密、安全、身份的生態系統，而Libindy 為它提供客戶端。Indy 使人 – 而不是傳統機構 – 控制他們的個人資料以及如何公開。它令各種創新變得可能：授權、嶄新的支付流程、資產及文件管理、不同形式的委託、聲譽累積、與其他新技術整合等等。

Indy使用開源的分佈賬戶技術。這個賬戶是由一群參與者合作建立的一種數據庫，而非一個中央管理的大規模數據庫。數據冗餘地存在於多個地方，而由多部參與的電腦（機器）的交易所構成，透過大而有力的加密標準加以保護。它的設計充分使用密鑰管理和網絡安全的最佳實踐模式。所得的結果是一個可靠、公共的信任源頭，不受單一個體所控制，系統堅實而不受人侵駭入，足以抵禦其他個體敵意的破壞和顛覆。

如果你對加密學概念和區塊鏈技術還有疑惑，不用害怕，這指南會給你介紹Indy的主要概念，你來對地方了。

我们要讨论什么？

我们的目标是向你介绍很多关于 Indy 的概念，帮助你来理解让这一起工作起来的背后的原因。

我们会将整个过程编为一个故事。Alice，一个虚构的 Faber 大学的毕业生，想要应聘一家虚构的公司 Acme Corp 的一份工作。当她获得了这份工作后，她想要向 Thrift 银行申请一笔贷款，这样她就可以购买一辆汽车了。在工作申请表单上，她想用她的大学成绩单作为受过教育证明，并且一旦被录用后，Alice 想使用被雇佣的事实来作为申请贷款的信誉凭证。

在当今的世界里，身份信息以及信任交互非常混乱，它们很慢，与隐私性相违背，容易受到欺诈。我们将会展示给你 Indy 是如何让这些产生了巨大的进步。

作为 Faber 大学的毕业生，Alice 收到了一封毕业生的 newsletter，从中了解到她的母校可以提供数字成绩单（digital transcripts）。她登录了学校的毕业生网站，通过点击 获得成绩单 按钮，她申请了自己的成绩单。（其他的发起这个请求的方式还可能包括扫描一个 QR code，从一个公共的 URL 下载一份打包的成绩单，等等）

About Alice

Alice 还没有意识到，想要使用这个数字的成绩单，她需要一个新的类型的身份信息 - 并不是 Faber 大学存储在在校（on-campus）数据库中为她创建的传统的身份信息，而是一个属于她自己的全新的便携的身份信息，独立于所有的过去和将来的关系，不经过她的允许，没有人能够废除（revoke）、指派（co-opt）或者关联（correlate）这个身份信息。这就是一个 自我主权的身份信息（self-sovereign identity），也是 Indy 的核心功能。

在常规的情况下，管理一个自我主权的身份信息会要求使用 一个工具，比如一个桌面的或者手机的应用程序。它可能是一个独立的应用，或者使用一个第三方的服务机构（代理商）提供的账本服务。Sovrin 基金会（Sovrin Foundation）发布了一个这种类型的工具。Faber 大学了解了这些需求，并会建议 Alice 安装一个 Indy app 如果她没有安装过的话。这个 app 会作为点击 获得成绩单 按钮之后的工作流中的一部分而被安装。

在常规的情况下，管理一个自我主权的身份信息会要求使用 一个工具，比如一个桌面的或者手机的应用程序。它可能是一个独立的应用，或者使用一个第三方的服务机构（代理商）提供的账本服务。Sovrin 基金会（Sovrin Foundation）发布了一个这种类型的工具。Faber 大学了解了这些需求，并会建议 Alice 安装一个 Indy app 如果她没有安装过的话。这个 app 会作为点击 获得成绩单 按钮之后的工作流中的一部分而被安装。

当 Alice 点击了 获得成绩单 按钮后，她会下载一个带有一个 Indy 连接请求 的文件。这个连接请求文件的扩展名为 .indy，并且会和 Alice 的 Indy app 相关联，将会允许 Alice 创建跟另外一个在这个账本生态圈（ledger ecosystem）存在的一方（Faber 大学）的一个安全的信息沟通频道（channel）。

 Design Documents

Design Documents

Here are design documents to describe core concepts of the Indy SDK:

	Indy CLI Design

	Anoncreds Design

	Wallet Storage Design

	Payment Interface

	Decentralized Key Management

	CLI plugins

	Payment Interface

	Legend

	Goals

	API

	Wallet Export/Import Design

	Payment Interface

	Wallet Query Language

 Indy CLI Design

Indy CLI Design

Re-implementation of CLI

This proposal follow the idea to re-implement CLI from scratch. Main reasons are:

	Existing code base is written in hard-to support way.

	Existing code base is too far from libindy entities model.

	Existing code base requires complex runtime (python) and additional dependencies (python libindy wrapper) that complicates deployment.

	It is just cheaper to re-implement CLI than to perform deep refactoring.

Use Rust language

We propose to re-implement CLI in Rust. Main reasons are:

	Main libindy code base uses Rust. Team has deep Rust experience.

	No need to big runtime, small list of dependencies. As result simple packaging and deployment.

	Rust is nice and reliable cross-platform solution for native apps.

Terminal input-output handling

To handle complex terminal input, history and autocompletion support on different terminals linefeed crate will be used (few additional alternatives are also available). To handle colored terminal output ansi_term crate will be used.

Auto completion

The following autocompletion will be provided through readline infrastructure:

	Command group name completion

	Command name completion

	Command param name completion

Libindy wrapper

CLI project will contain simple synchronous libindy wrapper:

	Code from libindy tests that provides similar wrapper will be partially reused.

	Synchronization will be performed through Rust channels:

	Main thread creates channel and closure that will send message to this channel.

	Calls libindy and puts this closure as callback.

	Blocks on reading from channel.

As channel reading assumes timeouts it will be possible to emulate progress updating .

Threading model

There will be one main thread that will perform io operations with terminal and libindy calls synchronized through Rust’s channel. Blocking will be limited by small channel read timeout.

Execution modes

CLI will support 2 execution modes:

	Interactive. In this mode CLI will read commands from terminal interactively.

	Batch. In this code all commands will be read from file or pipe and executed in series.

Code structure

	CLI code will define “Command” structure that will be container for:

	Command meta information (name, command help, supported params, params help)

	“Executor” function that will contain command execution logic

	“Cleaner” function that will contain command cleanup logic

	Each command will be implemented as Rust module with one public “new” function that returns configured “Command” instance

	All commands will share one “CommandContext”. “CommandContext” will hold application state and contain 2 parts:

	Pre-defined application part. Part that holds application-level state like command prompt, isExit flag and etc…

	Generic command specific part. This part will be key-value storage that will allow commands to store command-specific data like Indy SDK handles, used DID and etc…

	“Executor” and “Cleaner” functions will get CommandContext as parameter

	Actual execution of commands will be performed by CommandExecutor class. This class will:

	Instantiation of shared “CommandContext”

	Hold all commands and command grouping info

	Parse command lines according to commands meta information and search for relevant command

	Triggering of command execution

	Provide line auto completion logic

	Triggerid of command cleanup
Command instances will optionally share few contexts:

	EntryPoint will:

	Instantiate CommandExecutor and provide commands to command executor instance.

	Determine execution mode.

	In interactive mode it will start readline cycle and execute each line with CommandExecutor until Exit command received.

	In batch mode it will execute each command in the list and finish execution after completion of all commands.

See diagram:

 Anoncreds Design

Anoncreds Design

Here you can find the requirements and design for Indy SDK Anoncreds workflow (including revocation).

	Anoncreds References

	Design Goals

	Anoncreds Workflow

	API

Anoncreds References

Anoncreds protocol links:

	Anoncreds Workflow

	Anoncreds Requirements [https://github.com/hyperledger/indy-node/blob/master/design/anoncreds.md#requirements]

	Indy Node Anoncreds transactions:

	SCHEMA [https://github.com/hyperledger/indy-node/blob/master/design/anoncreds.md##schema]

	CRED_DEF [https://github.com/hyperledger/indy-node/blob/master/design/anoncreds.md##cred_def]

	REVOC_REG_DEF [https://github.com/hyperledger/indy-node/blob/master/design/anoncreds.md##revoc_reg_def]

	REVOC_REG_ENTRY [https://github.com/hyperledger/indy-node/blob/master/design/anoncreds.md##revoc_reg_entry]

	Timestamp Support in State [https://github.com/hyperledger/indy-node/blob/master/design/anoncreds.md#timestamp-support-in-state]

	GET_OBJ [https://github.com/hyperledger/indy-node/blob/master/design/anoncreds.md#get_obj]

	Issuer Key Rotation [https://github.com/hyperledger/indy-node/blob/master/design/anoncreds.md#issuer-key-rotation]

	Anoncreds Math [https://github.com/hyperledger/indy-crypto/blob/master/libindy-crypto/docs/AnonCred.pdf]

	Anoncreds Protocol Crypto API [https://github.com/hyperledger/indy-crypto/blob/master/libindy-crypto/docs/anoncreds-design.md]

Design Goals

	Indy SDK and Indy Node should use the same format for public Anoncreds entities (Schema, Credential Definition, Revocation Registry Definition, Revocation Registry Delta)

	Indy SDK and Indy Node should use the same entities referencing approach

	It should be possible to integrate additional credential signature and revocation schemas without breaking API changes

	API should provide flexible and pluggable approach to handle revocation tails files

	API should provide the way to calculate revocation witness values on cloud agent to avoid downlo